NAME		

MIDTERM EXAM

ECE 451 October 15, 2014

12:00 - 12:50 p.m.

<u>Instructions</u>: Write your name and section where indicated. Show all work. Indicate the units of your answers.

Mason's non-touching loop rule:

$$T = \frac{P_1 \boxed{1 - \sum L(1)^{(1)} + \sum L(2)^{(1)} - ...} + P_2 \boxed{1 - \sum L(1)^{(2)} + \sum L(2)^{(2)} - ...} + ...}{1 - \sum L(1) + \sum L(2) - \sum L(3) + ...}$$

Problem 1	Problem 2	Problem 2	Problem 2	Total
(25 pts)	(25 pts)	(25 pts)	(25 pts)	(100 pts)

- 1. A transmission line of characteristic impedance Z_o , length d and propagation constant β is terminated with an open.
 - (a) Find the input impedance.
 - (b) Draw a rough sketch of Z_{in}/Z_o for βd ranging from 0 to π and label the frequency bands where the transmission line looks capacitive and where it looks inductive.
 - (c) At what frequencies does this open transmission line look like a short circuit?

2. For the transmission line shown below, write the scattering parameter matrix as measured on a $50-\Omega$ network analyzer.

3. For the circuit shown below (lab student unknown), the transmission lines use air as dielectric. What is the lowest frequency for which Γ_{in} = 0? (Use Z_o as your reference impedance).

- 4. A lossless transmission line has the following per unit length parameters: $L = 80 \text{ nH-m}^{-1}$, $C = 200 \text{ pF} \cdot \text{m}^{-1}$ Consider a traveling wave on the transmission line with a frequency of 1 GHz.
 - (a) What is the attenuation constant?
 - (b) What is the phase constant?
 - (c) What is the phase velocity?
 - (d) What is the characteristic impedance of the line?
 - (e) Now consider that the dielectric is replaced by a dielectric with $\varepsilon_r = 1$ (or air). The capacitance per unit length of the line is now $C(\text{air}) = 50 \text{ pF.m}^{-1}$. What is the effective relative dielectric constant of the line?