NAME	NETID	

MIDTERM EXAM

ECE 451 March 10, 2021

Instructions: Write your name and NetID where indicated. This examination consists of 4 problems. This is an open-book and open-notes exam. Use 50 Ω as the reference impedance for all measurement systems.

Problem 1	Problem 2	Problem 3	Problem 4	Total
(25 pts)	(25 pts)	(25 pts)	(25 pts)	(100 pts)

Mason's non-touching loop rule:

$$T = \frac{P_1 \left[1 - \sum L(1)^{(1)} + \sum L(2)^{(1)} - \dots \right] + P_2 \left[1 - \sum L(1)^{(2)} + \sum L(2)^{(2)} - \dots \right] + \dots}{1 - \sum L(1) + \sum L(2) - \sum L(3) + \dots}$$

1. The matrices below are measured scattering parameters. In each case, indicate the characteristics that apply by checking in the appropriate boxes.

	$\begin{bmatrix} 0.8 & 0.6 \\ 0.6 & j0.8 \end{bmatrix}$	$\begin{bmatrix} 0 & 0.1 \\ 10 & 0 \end{bmatrix}$	$egin{bmatrix} 0 & e^{-(lpha+jeta)d} \ e^{-(lpha+jeta)d} & 0 \end{bmatrix}$, $lpha,eta{>}0$
active			
reciprocal			
lossy			

2. For the transmission line shown below, write the scattering parameter matrix as measured on a $50-\Omega$ network analyzer.

_

- 3. A transmission line of characteristic impedance Z_o , length d, propagation velocity v, and propagation constant β is terminated with an open.
 - (a) Find the input impedance Z_{in} . Express your answers in terms of Z_0 , β , and d
 - (b) Draw a rough sketch of Z_{in}/Z_o for βd ranging from 0 to π and label the frequency bands where the transmission line looks capacitive and where it looks inductive.
 - (c) At what frequencies does this open transmission line look like a short circuit?

- 4. A lossless transmission line has the following per unit length parameters: $L = 80 \text{ nH-m}^{-1}$, $C = 200 \text{ pF} \cdot \text{m}^{-1}$ Consider a traveling wave on the transmission line with a frequency of 1 GHz.
 - (a) What is the attenuation constant?
 - (b) What is the phase constant?
 - (c) What is the phase velocity?
 - (d) What is the characteristic impedance of the line?
 - (e) When the dielectric in the transmission line is replaced with air ($\varepsilon_r = 1$), the capacitance per unit length of the line is found to be $C(\text{air}) = 50 \text{ pF.m}^{-1}$. What was the effective relative permittivity of the dielectric?