NAME Solutions NETID

MIDTERM EXAM

ECE 451 March 10, 2021

Instructions: Write your name and NetID where indicated. This examination consists of 4 problems. This is an open-book and open-notes exam. Use 50 Ω as the reference impedance for all measurement systems.

Problem 1	Problem 2	Problem 3	Problem 4	Total
(25 pts)	(25 pts)	(25 pts)	(25 pts)	(100 pts)

Mason's non-touching loop rule:

$$T = \frac{P_1 \left[1 - \sum L(1)^{(1)} + \sum L(2)^{(1)} - \dots \right] + P_2 \left[1 - \sum L(1)^{(2)} + \sum L(2)^{(2)} - \dots \right] + \dots}{1 - \sum L(1) + \sum L(2) - \sum L(3) + \dots}$$

1. The matrices below are measured scattering parameters. In each case, indicate the characteristics that apply by checking in the appropriate boxes.

	$\begin{bmatrix} 0.8 & 0.6 \\ 0.6 & j0.8 \end{bmatrix}$	$\begin{bmatrix} 0 & 0.1 \\ 10 & 0 \end{bmatrix}$	$egin{bmatrix} 0 & e^{-(lpha+jeta)d} \ e^{-(lpha+jeta)d} & 0 \end{bmatrix}$, $lpha,eta{>}0$	
active	No	Yes	No	
reciprocal	Yes	No	Yes	
lossy	No	No	Yes	

2. For the transmission line shown below, write the scattering parameter matrix as measured on a $50-\Omega$ network analyzer.

Solutions

$$S_{11} = \frac{(1 - X^2)\Gamma}{1 - X^2\Gamma^2}$$
 and $S_{21} = \frac{(1 - \Gamma^2)X}{1 - X^2\Gamma^2}$

with
$$\Gamma = \frac{Z_{o1} - Z_o}{Z_{o1} + Z_o}$$
 and $X = e^{-j\frac{2\pi}{\lambda}l}$

$$X = e^{-j\frac{2\pi\lambda}{\lambda}} = e^{-j\pi/2} = -j$$

$$\Gamma = \frac{25-50}{25+50} = \frac{-25}{100} = -\frac{1}{4}$$

$$S_{11} = \frac{\left(1 - \left(-j\right)^2\right)\left(-1/3\right)}{1 - \left(-j\right)^2\left(1/9\right)} = \frac{-2\left(1/3\right)}{1 + 1/9} = -0.6$$

$$S_{21} = \frac{(1-1/9)(-j)}{1-(-j)^2(1/9)} = \frac{-8j/9}{1+1/9} = -j0.8$$

$$S = \begin{bmatrix} -0.6 & -j0.8 \\ -j0.8 & -0. \end{bmatrix}$$

- 3. A transmission line of characteristic impedance Z_o , length d, propagation velocity v, and propagation constant β is terminated with an open.
 - (a) Find the input impedance Z_{in} . Express your answers in terms of Z_0 , β , and d
 - (b) Draw a rough sketch of Z_{in}/Z_o for βd ranging from 0 to π and label the frequency bands where the transmission line looks capacitive and where it looks inductive.
 - (c) At what frequencies does this open transmission line look like a short circuit?

Solutions

(a) For a transmission line of length d, we have:

$$Z_{in} = Z_o \left\{ \frac{Z_L + jZ_o \tan \beta d}{Z_o + jZ_L \tan \beta d} \right\}$$

If $Z_L \to \infty$, then $Z_{in} = -jZ_o \cot \beta d$

(b)

(c) The TL looks like a short for $\beta d = \frac{(2n+1)\pi}{2}$, n = 0,1,2,... or

$$\frac{2\pi fd}{v} = \frac{(2n+1)\pi}{2}, n = 0, 1, 2, \dots$$

where v is the propagation velocity in the TL. This leads to: $f = \frac{(2n+1)v}{4d}, n = 0,1,2,...$

If
$$n = 0$$
, $f = v/4d$

- 4. A lossless transmission line has the following per unit length parameters: $L = 80 \text{ nH-m}^{-1}$, $C = 200 \text{ pF} \cdot \text{m}^{-1}$ Consider a traveling wave on the transmission line with a frequency of 1 GHz.
 - (a) What is the attenuation constant?
 - (b) What is the phase constant?
 - (c) What is the phase velocity?
 - (d) What is the characteristic impedance of the line?
 - (e) When the dielectric in the transmission line is replaced with air ($\varepsilon_r = 1$), the capacitance per unit length of the line is found to be $C(\text{air}) = 50 \text{ pF.m}^{-1}$. What was the effective relative permittivity of the dielectric?
 - (a) $\alpha = 0$
 - (b) $\beta = \omega \sqrt{LC} = 25.13 \ radians / m$

(c)
$$v_p = \omega / \beta = \frac{1}{\sqrt{LC}} = 2.5 \times 10^8 \ m/s$$

(d)
$$Z_0 = \sqrt{L/C} = 20 \Omega$$

(e)
$$\varepsilon_r = \frac{200}{50} = 4$$