| NAME | NETID | | |------|-------|--| | | | | ## MIDTERM EXAM ECE 451 March 10, 2025 12:00 - 12:50 pm Instructions: Write your name and NetID where indicated. This examination consists of 3 problems. This is an open-book and open-notes exam. Use 50 Ω as the reference impedance for all measurement systems. | Problem 1 | Problem 2 | Problem 3 | Total | |-----------|-----------|-----------|-----------| | (40 pts) | (40 pts) | (20 pts) | (100 pts) | Mason's non-touching loop rule: $$T = \frac{P_1 \left[1 - \sum L(1)^{(1)} + \sum L(2)^{(1)} - \dots \right] + P_2 \left[1 - \sum L(1)^{(2)} + \sum L(2)^{(2)} - \dots \right] + \dots}{1 - \sum L(1) + \sum L(2) - \sum L(3) + \dots}$$ 1. For the transmission line shown below, write the scattering parameter matrix as measured on a $50-\Omega$ network analyzer. - 2. A transmission line of characteristic impedance Z_o , length d and propagation constant β is terminated with an open. - (a) Find the input impedance. - (b) Draw a rough sketch of Z_{in}/Z_o for βd ranging from 0 to π and label the frequency bands where the transmission line looks capacitive and where it looks inductive. - (c) At what frequencies does this open transmission line look like a short circuit? - 2. A slotted line is made of coaxial conductors with air as the dielectric. The characteristic impedance is 50 Ω . When a load Z_R is connected to the slotted line, the voltage magnitude is that of the plot shown in the figure. - (a) What is the frequency of the signal? (b) What is the value of Z_R ?