NAME	Solutions	NETID
117 11111	Dolutions	TETIE

MIDTERM EXAM

ECE 451 March 10, 2025

12:00 - 12:50 pm

Instructions: Write your name and NetID where indicated. This examination consists of 3 problems. This is an open-book and open-notes exam. Use $50~\Omega$ as the reference impedance for all measurement systems.

Problem 1	Problem 2	Problem 3	Total
(40 pts)	(40 pts)	(20 pts)	(100 pts)

Mason's non-touching loop rule:

$$T = \frac{P_1 \left[1 - \sum L(1)^{(1)} + \sum L(2)^{(1)} - \dots \right] + P_2 \left[1 - \sum L(1)^{(2)} + \sum L(2)^{(2)} - \dots \right] + \dots}{1 - \sum L(1) + \sum L(2) - \sum L(3) + \dots}$$

1. For the transmission line shown below, write the scattering parameter matrix as measured on a $50-\Omega$ network analyzer.

Solutions

$$S_{11} = \frac{(1 - X^2)\Gamma}{1 - X^2\Gamma^2}$$
 and $S_{21} = \frac{(1 - \Gamma^2)X}{1 - X^2\Gamma^2}$

with
$$\Gamma = \frac{Z_{o1} - Z_o}{Z_{o1} + Z_o}$$
 and $X = e^{-j\frac{2\pi}{\lambda}l}$

$$X = e^{-j\frac{2\pi\lambda}{\lambda}} = e^{-j\pi/2} = -j$$

$$\Gamma = \frac{25-50}{25+50} = \frac{-25}{75} = -\frac{1}{3}$$

$$S_{11} = \frac{\left(1 - \left(-j\right)^2\right)\left(-1/3\right)}{1 - \left(-j\right)^2\left(1/9\right)} = \frac{-2\left(1/3\right)}{1 + 1/9} = -0.6$$

$$S_{21} = \frac{(1-1/9)(-j)}{1-(-j)^2(1/9)} = \frac{-8j/9}{1+1/9} = -j0.8$$

$$S = \begin{bmatrix} -0.6 & -j0.8 \\ -j0.8 & -0.6 \end{bmatrix}$$

- 2. A transmission line of characteristic impedance Z_o , length d and propagation constant β is terminated with an open.
 - (a) Find the input impedance.
 - (b) Draw a rough sketch of Z_{in}/Z_o for βd ranging from 0 to π and label the frequency bands where the transmission line looks capacitive and where it looks inductive.
 - (c) At what frequencies does this open transmission line look like a short circuit?
- (a) For a transmission line of length d, we have:

$$Z_{in} = Z_o \left\{ \frac{Z_L + jZ_o \tan \beta d}{Z_o + jZ_L \tan \beta d} \right\}$$

If $Z_L \to \infty$, then $Z_{in} = -jZ_o \cot \alpha \beta d$

(b)

(c) The TL looks like a short for

$$\beta d = \frac{(2n+1)\pi}{2}, n = 0,1,2,... \text{ or } \frac{2\pi f d}{v} = \frac{(2n+1)\pi}{2}, n = 0,1,2,...$$

where v is the propagation velocity in the TL. This leads to: $f = \frac{(2n+1)v}{4d}, n = 0,1,2,...$

- 2. A slotted line is made of coaxial conductors with air as the dielectric. The characteristic impedance is 50 Ω . When a load Z_R is connected to the slotted line, the voltage magnitude is that of the plot shown in the figure.
 - (a) What is the frequency of the signal?

$$\frac{\lambda}{2} = 20 \text{ cm} \Rightarrow \lambda = 40 \text{ cm}$$

$$f = \frac{c}{\lambda} = \frac{3 \times 10^8}{40 \times 10^{-2}} = 750 \text{ MHz}$$

(b) What is the value of Z_R ?

$$d_{\min} = 10 \text{ cm} = \frac{\lambda}{4}$$

$$VSWR = \frac{V_{max}}{V_{min}} = \frac{4}{2} = 2$$

$$\Gamma_R = -\left(\frac{VSWR - 1}{VSWR + 1}\right) e^{+2j\beta d_{min}}$$

$$\Gamma_R = -\left(\frac{2 - 1}{2 + 1}\right) e^{+2j\frac{2\pi\lambda}{\lambda}} = \frac{1}{3}$$

$$Z_R = Z_o\left(\frac{1 + \Gamma_R}{1 - \Gamma_P}\right) = 50\left(\frac{1 + 1/3}{1 - 1/3}\right) = 100 \Omega$$