1. (8 points) Find a formula for f(x) given that $f''(x) = 5\sin x + 3\cos x$, f(0) = 10, and f'(0) = 10.

2. (6 points) The population of a town is currently 400, but it is expected to increase at a rate of $200e^{0.5t}$ people per year where t represents the number of years from now. What is the population of this town expected to be in 10 years?

3. (6 points) Evaluate the following limit.

$$\lim_{n \to \infty} \sum_{k=1}^{n} \left(\frac{5k}{n^3} + \frac{7}{n} \right)$$

4. (6 points) The definite integral $\int_2^6 e^{t^2} dt$ can be written as a limit. Fill in the missing information in this limit.

$$\int_2^6 e^{t^2} dt = \lim_{n \to \infty} \sum_{k=1}^n \left[$$

5. (12 points) Suppose that f is an odd function and g is an even function which are each integrable on the interval [-5,5]. Given that $\int_0^5 f(x) dx = 8$ and $\int_0^5 g(x) dx = 3$, evaluate the following definite integrals.

(a)
$$\int_{5}^{0} g(x) dx$$

(b)
$$\int_5^5 f(x) \, dx$$

(c)
$$\int_{-5}^{5} (2f(x) + 4g(x)) dx$$

(d)
$$\int_{-5}^{5} \left(4 + (f(x))^3\right) dx$$

6. (6 points each) Evaluate the following definite and indefinite integrals.

(a)
$$\int \left(e^x + \frac{1}{3x} + 5\right) dx$$

(b)
$$\int_{1}^{2} (10x + 5) dx$$

(c)
$$\int_0^2 (3 + 2e^{-x}) dx$$

(d)
$$\int x^2 \sqrt{x^3 + 4} \, dx$$

7. (5 points each) Evaluate the following indefinite integrals.

(a)
$$\int x^2(x+4)^{10} dx$$

(b)
$$\int \sec^6 x \tan^3 x \, dx$$

8. (6 points each) Let **R** be the region bounded by the graphs of $f(x) = x^2 - 10x + 30$ and g(x) = 2x + 3 as shown below. Set up, but do not evaluate, definite integrals which represent the given quantities. Use proper notation.

(a) The area of \mathbf{R} .

(b) The volume of the solid obtained when \mathbf{R} is revolved around the y-axis.

(c) The volume of the solid obtained when ${\bf R}$ is revolved around the horizontal line y=-10.

- 9. (5 points each) Set up, but do not evaluate, definite integrals which represent the given quantities. Use proper notation.
 - (a) The average value of $f(x) = \frac{e^{3x}}{\pi 2}$ on the interval $[3, \pi]$.

(b) The length of the curve $f(x) = 3\sin 2x$ for $0 \le x \le 2\pi$.