MATH 220 Test 2 Fall 2016

UIN _____

Name	NetID

- Sit in your assigned seat (circled below).
- Circle your TA discussion section.
- Do not open this test booklet until I say START.
- Turn off all electronic devices and put away all items except a pen/pencil and an eraser.
- Remove hats and sunglasses.
- You must show sufficient work to justify each answer.
- While the test is in progress, we will not answer questions concerning the test material.
- Do not leave early unless you are at the end of a row.
- ullet Quit working and close this test booklet when I say STOP.
- Quickly turn in your test to me or a TA and show your Student ID.

▶ AD1 , TR 11:00-12:50, Andrew McConvey	\triangleright ADJ , TR 9:00-9:50, Kyle Pratt
\triangleright AD2 , TR 9:00-10:50, Ben Wright	▷ ADK , TR 10:00-10:50, Kyle Pratt
▷ AD3 , TR 1:00-2:50, Cassie Christenson	ightharpoonup ADL, TR 11:00-11:50, Tigran Hakobyan
⊳ ADA , TR 8:00-8:50, Alexi Block Gorman	▷ ADM , TR 12:00-12:50, Liz Tatum
⊳ ADB , TR 9:00-9:50, Dakota Ihli	▶ ADN , TR 1:00-1:50, Xujun 'Henry' Liu
▷ ADC , TR 10:00-10:50, Elizabeth Field	⊳ ADO, TR 2:00-2:50, Tigran Hakobyan
▷ ADD , TR 11:00-11:50, Adam Wagner	▷ ADP , TR 3:00-3:50, Liz Tatum
▶ ADE , TR 12:00-12:50, Adam Wagner	▷ ADQ , TR 10:00-10:50, Dakota Ihli
⊳ ADF , TR 1:00-1:50, Tsutomu Okano	▷ ADR , TR 9:00-9:50, Elizabeth Field
⊳ ADG , TR 2:00-2:50, Xujun 'Henry' Liu	⊳ ADS, TR 12:00-12:50, Tsutomu Okano
▷ ADH , TR 3:00-3:50, Mychael Sanchez	▷ ADT , TR 2:00-2:50, Anna Weigandt
\triangleright ADI, TR 4:00-4:50, Mychael Sanchez	⊳ ADU , TR 3:00-3:50, Anna Weigandt
	R1 R2 R3

	\Diamond	\Diamond	\Diamond	♦											R1	R2	R3		
	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8	Q9		Q1	Q2	Q3	Q4	
	P1	P2	P3	P4	P1	P2	P3	P4	P5	P6	P7	P8	P9		P1	P2	P3	P4	P5
N1	N2	N3	N4	N5	N1	N2	N3	N4	N5	N6	N7	N8	N9	N10	N1	N2	N3	N4	N5
M1	M2	M3	M4	M5	M1	M2	M3	M4	M5	M6	M7	M8	M9	M10	M1	M2	M3	M4	M5
L1	L2	L3	L4	L5	L1	L2	L3	L4	L5	L6	L7	L8	L9	L10	L1	L2	L3	L4	L5
K1	K2	K3	K4	K5	K1	K2	K3	K4	K5	K6	K7	K8	K9	K10	K1	K2	K3	K4	K5
J1	J2	J3	J4	J5	J1	J2	J3	J4	J5	J6	J7	J8	J 9	J10	J1	J2	J3	J4	J5
H1	H2	H3	H4	H5	H1	H2	H3	H4	H5	H6	H7	H8	H9	H10	H1	H2	H3	H4	H5
G1	G2	G3	G4	G5	G1	G2	G3	G4	G5	G6	G7	G8	G9	G10	G1	G2	G3	G4	G5
F1	F2	F3	F4	F5	F1	F2	F3	F4	F5	F6	F7	F8	F9	F10	F1	F2	F3	F4	F5
E1	E2	E3	E4	E5	E1	E2	E3	E4	E5	E6	E7	E8	E9	E10	E1	E2	E3	E4	E5
D1	D2	D3	D4	D5	D1	D2	D3	D4	D5	D6	D7	D8	D9	D10	D1	D2	D3	D4	D5
C1	C2	C3	C4	C5	C1	C2	C3	C4	C5	C6	C7	C8	C9	C10	C1	C2	C3	C4	C5
B1	B2	B3	B4	B5	B1	B2	B3	B4	B5	B6	B7	B8	B9	B10	B1	B2	B3	B4	B5
A1	\Diamond	\Diamond	\Diamond	♦											\$	\Diamond	\Diamond	\Diamond	A5

1. (8 points) Find g'(x) given that $g(x) = 7x^6 + \frac{9}{x} + 8\cot(x) + 5\sec(x)$

2. (8 points) Find f'(x) given that $f(x) = \ln(42 + \sin(e^{8x}))$

3. (8 points) Find w'(x) given that $w(x) = \left(\frac{x^2 + 9}{13e^{7x}}\right)^{42}$

4. (8 points) Find $\frac{dy}{dx}$ given that $x^9y^5 = 8x + 10y^3$

5. (8 points) Find $\frac{dy}{dx}$ and write your answer in terms of x given the function $y = x^{(2x^{-9})}$

6.	(10 points) Elizabeth wants to enclose a 1600 square foot rectangular region to be used for a garden. She will use fencing which costs \$10 per linear foot along three of the sides, and fencing which costs \$70 per linear foot along the fourth side. Determine the minimum cost needed to build this fence.

7. (10 points) For each x > 0, a triangle is formed with vertices (0,0), (x,0) and (x,y) where (x,y) is the position of a particle moving along the curve y = 60/x. The particle's x-coordinate is increasing at a rate of 26 cm/min. As the particle passes through the point (5,12), determine the rate of change of the angle θ (see diagram).

8. (10 points) Evaluate the following limit. You must justify and simplify your answer.

$$\lim_{x \to 1} \left(\sin \left(\frac{\pi x^5 - \pi}{10x^2 - 10} \right) \right)$$

9. (10 points) Find the highest and lowest points on the graph of $f(x) = \frac{\ln x}{x^{35}}$ on the interval [1, e].

10. (10 points) Solve the following differential equations given that the graph of each solution goes through the point $(v, \alpha) = (0, 8)$. You must use the given variables.

(a)
$$\frac{d\alpha}{dv} = 42v$$

(b)
$$\frac{d\alpha}{dv} = 42\alpha$$

11. (10 points) A polynomial f(x) has the following first derivative.

$$f'(x) = 2x^3 + 15x^2 - 216x + 42$$

- (a) State each interval upon which the graph of f(x) is concave down.
- (b) State each interval upon which the graph of f(x) is concave up.
- (c) State each x-value at which the graph of f(x) has an inflection point.

Students – do not write on this page!

1.	(8 points)
2.	(8 points)
3.	(8 points)
4.	(8 points)
5.	(8 points)
6.	(10 points)
7.	(10 points)
8.	(10 points)
9.	(10 points)
10.	(10 points)
11.	(10 points)
Т	OTAL (100 points)