1. (8 points each) Evaluate the integral.

(a)
$$\int x \cos(3x) \, dx$$

(b)
$$\int \sec^4(5x) dx$$

(c)
$$\int \frac{3\cos^5 \alpha}{\sqrt{\sin \alpha}} \, d\alpha$$

2. (8 points each) Evaluate the integral.

(a)
$$\int \frac{dx}{(25+x^2)^{\frac{3}{2}}}$$

(b)
$$\int \frac{x^2}{x^2+9}$$

(c)
$$\int \frac{x+a}{x^2-x} dx$$

3. $(10 \ points)$ Determine whether the integral is convergent or divergent. If it is convergent, evaluate it.

(a)
$$\int_{1}^{\infty} \frac{dx}{\sqrt[3]{x}}$$

(b)
$$\int_0^1 \frac{dx}{\sqrt[3]{x}}$$

 $4. \ (\textit{8 points})$

For any twice differentiable function f on [a, b], $P_a^b(f)$ will approximate $\int_a^b f(x) dx$ to an error no more than $K_2 \frac{(b-a)^4}{32}$ when $|f''(x)| \leq K_2$ for all x in [a, b]. You use P(f) to numerically approximate the integral $\int_1^3 \sqrt{1+x^3} dx$ by subdividing the interval into 10 equal pieces and applying P(f) to each of the smaller intervals.

Using that the absolute value of the second derivative of $\sqrt{1+x^3}$ is never more than 2 over [1, 3], what is an upper bound for the error of your approximation (4 points) and why (6 points)?

- 5. (12 points, 8/4) Let a > 0. Evaluate the integrals.
 - (a) $\int \sin(x)e^{-ax} dx$
 - (b) $\int_0^\infty \sin(x)e^{-ax} dx$