
Math 231 Exam III

UIUC, April 18, 2013

1. (8 points) Short answer.

(a) Suppose that c(x) =
∑∞

n=0 cnx
n converges for x = −4 but diverges for

x = 6.

i.
∑∞

n=0 2ncn (absolutely converges/ conditionally converges/diverges).

Solution: Since c(x) is centered at 0 and converges at −4 the series
absolutely converges on (−4, 4) and in particular at 2, so

∑∞
n=0 2ncn

absolutely converges.

ii.
∑∞

n=0(−8)ncn (absolutely converges/ conditionally converges/diverges).

Solution: Since c(x) is centered at 0 and diverges at 6 the series di-
verges for all |x| > 6 and in particular at−8, so

∑∞
n=0(−8)ncn diverges.

(b) Calculate the binomial coefficient

(
−3

3

)
=

Solution: (
−3

3

)
=
−3(−3− 1)(−3− 2)

3!
=
−3(−4)(−5)

6

(c) Recall that ln 2 =
∑∞

n=0
(−1)n

n+1
. By the Alternating Series Estimation, how

accurate is 1− 1
2

+ · · · − 1
8

+ 1
9

= 1879
2520

to the actual value of ln 2?

Solution: The error is given by the next term of the sequence, which is
− 1

10
and so this is an over estimate to ln 2 by no more than 1

10
. (Note,

ln 2 = .693.... while 1879
2520

= .745...)

2. (10 points) Find a series solution to the integral∫ 1

0

e−x2

dx

Solution: Since ex =
∑∞

n=0
xn

n!
with infinite radius of convergence,∫ 1

0

e−x2

dx =

∫ 1

0

(
∞∑

n=0

(−x2)n

n!

)
dx =

∞∑
n=0

(−1)n

n!

∫ 1

0

x2n dx =
∞∑

n=0

(−1)n

n!

1

2n + 1



3. (12 points each) Find the radius and interval of convergence for the power
series. Be sure to indicate which points converge absolutely and which converge
conditionally.

(a)
∞∑

n=0

(x + 2)n

2 · 4 · 6 · · · (2n + 2)

Solution: By Ratio Test

lim
n→∞

∣∣∣ (x+2)n+1

2·4···(2n+2)(2(n+1)+2)

∣∣∣∣∣∣ (x+2)n

2·4···(2n+2)

∣∣∣ = |x+2| lim
n→∞

2 · 4 · · · (2n + 2)

2 · 4 · · · (2n + 2)(2n + 4)
= |x+2| lim

n→∞

1

2n + 4
= 0

Thus, the series absolutely converges for all x and so the radius is ∞ and
the interval is (−∞,∞).

(b)
∞∑

n=0

(3x + 2)n

(n + 1)(n)

Solution: By Ratio Test

lim
n→∞

∣∣∣ (3x+2)n+1

((n+1)+1)(n+1)

∣∣∣∣∣∣ (3x+2)n

(n+1)(n)

∣∣∣ = |3x+2| lim
n→∞

(n + 1)(n)

(n + 2)(n + 1)
= |3x+2| lim

n→∞

1 + 1
n

1 + 3
n

+ 2
n2

= |3x+2|

Thus, the series converges absolutely when |3x + 2| < 1 or |x + 2
3
| < 1

3
.

The Radius of the series is 1
3

(centered at −2
3
) and the endpoints of the

interval are when |3x + 2| = 1 or x = −1 and x = −1
3
.

When x = −1
3

we obtain

∞∑
n=0

(3(−1/3) + 2)n

(n + 1)(n)
=
∞∑

n=0

1

(n + 1)n
<
∞∑

n=0

1

n2

and the series absolutely converges by comparison with a p-series for p = 2.

When x = −1 we obtain
∞∑

n=0

(3(−1) + 2)n

(n + 1)(n)
=
∞∑

n=0

(−1)n 1

(n + 1)n

which also absolutely converges by the previous case.

Thus, the interval of convergence is [-1,1] with absolute convergence at the
endpoints.
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4. (12 points) Give the Taylor polynomial with degree 2 centered at 1 for f(x) =
5
√

x. Then use Taylor’s Inequality to estimate the accuracy of this approxima-
tion for x between 1 and 1.1.

Solution: We begin by tabulating the derivatives of f .

Derivative Function at a = 1

f x
1
5 1

f ′ 1
5
x−

4
5

1
5

f ′′ 1
5
(−4

5
)x

−9
5 − 4

25

f (3) 1
5
(−4

5
)(−9

5
)x−

14
5

So the Taylor polynomial with degree 2 at 1 for f(x) = x
1
5 is

f(1) + f ′(1)(x− 1) + f ′′(1)
(x− 1)2

2!
= 1 +

1

5
(x− 1)− 2

25
(x− 1)2

By Taylor’s Remainder Theorem

5
√

x = 1 +
1

5
(x− 1)− 2

25
(x− 1)2 + f (3)(c)

(x− 1)3

3!

for some c between 1 and x. Thus, for x between 1 and 1.1, c is also between
1 and 1.1. Since f (3) = 36

125
1

5√
x14

is decreasing from 1 to 1.1 (the bigger the

denominator the smaller the fraction) the largest f (3)(c) can be is if c = 1. The
largest |x − 1|3 can be is when x = 1.1. Thus the error of the estimation from
1 to 1.1 is bounded by

|error| =
∣∣∣∣f (3)(c)

(x− 1)3

3!

∣∣∣∣ ≤ ∣∣∣∣f (3)(1)
(1.1− 1)3

3!

∣∣∣∣ =

∣∣∣∣ 36

125

1
5
√

114

∣∣∣∣ |1.1− 1|3

3!
=

6

125 · 103

5. (12 points) Let f be a function which has all derivatives and has the property
that f ′′ = f . If f(0) = 0 and f ′(0) = 1, what is the power series for f at 0?

Solution: We begin by tabulating the derivatives of f using the fact that

f (3) = (f ′′)
′
= (f)′ = f ′ and f (4) = (f ′′)

′′
= (f)′′ = f ′′ = f

3



Derivative at a =

f 0
f ′ 1
f ′′ 0
f (3) 1

f (4) = f 0

And so we see that f (n)(0) is 0 when n is even and 1 when n is odd. Since a

power series f(x) =
∑∞

n=0 cnx
n has the property that cn = f (n)

n!
we have that

f(x) ≈ x +
x3

3!
+

x5

5!
+ · · · =

∞∑
n=0

x2n+1

(2n + 1)!

(Note, f(x) = sinh x).

6. (12 points) Determine a power series centered at 0 for f(x) = sin−1 x and use it
to determine the 100-th derivative of sin−1 x at 0. You may find the following
useful (

−1
2

n

)
= (−1)n (1)(3)(5) · · · (2n− 1)

2nn!

Solution: Since d
dx

sin−1 x = 1√
1−x2 = (1 + (−x2))

1
2 we will integrate the series

obtained by the Binomial Theorem to obtain our series for sin−1 x. Recall,

(1 + x)k =
∞∑

n=0

(
k
n

)
xn; |x| < 1

and so

(1 + (−x2))
1
2 =

∞∑
n=0

(
−1

2

n

)
(−x2)n; |x2| < 1

Using the given formula and that (−1)n(−1)n = 1 this becomes

(1 + (−x2))
1
2 =

∞∑
n=0

(1)(3)(5) · · · (2n− 1)

2nn!
x2n; |x| < 1
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and so

sin−1 x = C +

∫
(1 + (−x2))

1
2 dx

= C +

∫ ( ∞∑
n=0

(1)(3)(5) · · · (2n− 1)

2nn!
x2n

)
dx

= C +
∞∑

n=0

(1)(3)(5) · · · (2n− 1)

2nn!

∫
x2n dx

= C +
∞∑

n=0

(1)(3)(5) · · · (2n− 1)

2nn!

x2n+1

2n + 1

To determine C, we evaluate at x = 0 to obtain 0 = sin−1 0 = C + 0 and so
C = 0.

If sin−1 x =
∑∞

n=0 cnx
n then cn is equal to the n-th derivative of sin−1 x at 0

divided by n!. In particular, the 100-th derivative of sin−1 x at 0 is 100! times
the coefficient for x100 in our series. From our formula, the series has non-zero
terms only at odd coefficients (x2n+1) which means that c100 = 0 (since 100 is
even) and so the 100-th derivative of sin−1 x at 0 is 0.
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