Math 231 Exam II1
UTUC, April 18, 2013

1. (8 points) Short answer.

(a) Suppose that c(z) = Y~ c,a™ converges for x = —4 but diverges for
x = 6.
i. Y 2", (absolutely converges/ conditionally converges/diverges).

Solution: Since c(z) is centered at 0 and converges at —4 the series
absolutely converges on (—4,4) and in particular at 2, so >~ 2"¢c,
absolutely converges.

ii. Y 2 o(—8)"c, (absolutely converges/ conditionally converges/diverges).

Solution: Since c¢(x) is centered at 0 and diverges at 6 the series di-
verges for all || > 6 and in particular at —8,s0 >~ (—8)"c, diverges.

(b) Calculate the binomial coefficient (_g) =

Solution:

3! 6
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(c) Recall that In2=73%">° % By the Alternating Series Estimation, how

accurate is 1 — % + .= % + % = % to the actual value of In 27

Solution: The error is given by the next term of the sequence, which is

—%0 and so this is an over estimate to In2 by no more than %. (Note,
In2 = .693.... while % =.745...)

2. (10 points) Find a series solution to the integral

1 2
/ e " dx
0

. . n . . . .
Solution: Since e* = 3~ L with infinite radius of convergence,
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3. (12 points each) Find the radius and interval of convergence for the power
series. Be sure to indicate which points converge absolutely and which converge
conditionally.
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Solution: By Ratio Test
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Thus, the series absolutely converges for all x and so the radius is oo and
the interval is (—o0, 00).
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Solution: By Ratio Test
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Thus, the series converges absolutely when |3z + 2| < 1 or |z + 2| <

1
3
The Radius of the series is 3 (centered at —3%) and the endpoints of the

interval are when [3z +2| =1 or 2 = —1 and z = —3.
When z = —% we obtain
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and the series absolutely converges by comparison with a p-series for p = 2.
When x = —1 we obtain
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which also absolutely converges by the previous case.

Thus, the interval of convergence is [-1,1] with absolute convergence at the
endpoints.



4. (12 points) Give the Taylor polynomial with degree 2 centered at 1 for f(x) =
v/x. Then use Taylor’s Inequality to estimate the accuracy of this approxima-
tion for x between 1 and 1.1.

Solution: We begin by tabulating the derivatives of f.

Derivative Function ata=1
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So the Taylor polynomial with degree 2 at 1 for f(z) = T5 is
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By Taylor’s Remainder Theorem
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for some ¢ between 1 and x. Thus, for  between 1 and 1.1, ¢ is also between
1 and 1.1. Since f©® = %\/%ﬂ is decreasing from 1 to 1.1 (the bigger the
denominator the smaller the fraction) the largest f)(c) can be is if ¢ = 1. The
largest |z — 1| can be is when x = 1.1. Thus the error of the estimation from

1 to 1.1 is bounded by
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5. (12 points) Let f be a function which has all derivatives and has the property
that f” = f. If f(0) =0 and f/(0) = 1, what is the power series for f at 07

Solution: We begin by tabulating the derivatives of f using the fact that

FO = (Y = (1) = f and O = (Y = () == f



Derivative at a =
f 0
f! 1
f/l O
@) 1
fW=f 0

And so we see that f(™(0) is 0 when n is even and 1 when n is odd. Since a

f

power series f(x) = Y ", c,a™ has the property that ¢, = we have that
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(Note, f(x) = sinhz).

. (12 points) Determine a power series centered at 0 for f(z) = sin~' 2 and use it
to determine the 100-th derivative of sin™' x at 0. You may find the following

useful .
=3\ = (_)nDE)E) - (20— 1)
_< ) Ny |
n 2mn!
Solution: Since 4 sin~'z = L= = (1 + (—22))2 we will integrate the series
dx V1—z2

obtained by the Binomial Theorem to obtain our series for sin™! z. Recall,

(1+2)" = 2 (i) o e < 1

n=

and so
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Using the given formula and that (—1)"(—1)" = 1 this becomes
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and so
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To determine C, we evaluate at # = 0 to obtain 0 = sin™'0 = C' + 0 and so
C=0.

If sin 'z = 77 c,2" then ¢, is equal to the n-th derivative of sin™'z at 0
divided by n!. In particular, the 100-th derivative of sin™' z at 0 is 100! times
the coefficient for 2% in our series. From our formula, the series has non-zero
terms only at odd coefficients (x?"!) which means that cjgo = 0 (since 100 is

even) and so the 100-th derivative of sin™'z at 0 is 0.



