Math 231/EL1 Final

UIUC, May 7, 2013

Q.	Pt	Score	Q.	Pt	Score	Q.	Pt	Score	Q.	Pt	Score
1	16		6	22		11	8		16	9	
2	16		7	22		12	10		17	4	
3	16		8	5		13	20		18	5	
4	5		9	3		14	10		TA	2	
5	7		10	8		15	12		ExCr	10	
Tot	60		Tot	60		Tot	60		Tot	30	

1. (8 points each) Evaluate the integral.

(a)
$$\int x \sin(3x) \, dx$$

(b)
$$\int \sec^4(5x) \, dx$$

2. (8 points each) Evaluate the integral.

(a)
$$\int \frac{3\cos^5 \alpha}{\sqrt{\sin \alpha}} \, d\alpha$$

(b)
$$\int \frac{dx}{(25+x^2)^{\frac{3}{2}}}$$

3. (8 points each) Evaluate the integral.

(a)
$$\int \frac{x^2}{x^2 + 4}$$

(b)
$$\int \frac{x+a}{x^2-x} \, dx$$

4. (5 points) Determine whether the integral is convergent or divergent. If it is convergent, evaluate it.

$$\int_{-1}^{2} \frac{dx}{x^{11}}$$

5. (7 points) Determine whether the integral is convergent or divergent. If it is convergent, evaluate it.

$$\int_0^\infty x e^{-3x} \, dx$$

6. (11 points each)

Determine if the series is **absolutely convergent**, **conditionally convergent** or **divergent**. Be sure to show your reasoning. No work, no credit.

(a)
$$\sum_{n=5}^{\infty} \frac{1}{\sqrt{n^3 + 30n}}$$

(b)
$$\sum_{n=2}^{\infty} (-1)^n \frac{n+3}{n}$$

7. (11 points each)

Determine if the series is **absolutely convergent**, **conditionally convergent** or **divergent**. Be sure to show your reasoning. No work, no credit.

(a)
$$\sum_{n=1}^{\infty} \frac{n^2}{7^n}$$

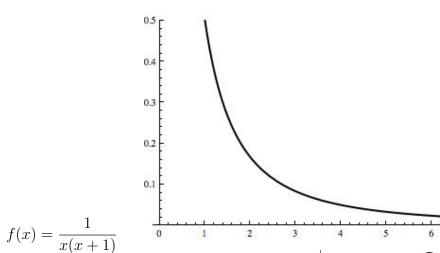
(b)
$$\sum_{n=2}^{\infty} \frac{1}{\ln(n^n)}$$

8. (5 points) Show that for any number $r \neq 1$ and positive integer k,

$$1 + r + r^2 + \dots + r^k = \frac{1 - r^{k+1}}{1 - r}$$

9. (3 points) Draw on the diagram and give a brief explanation why

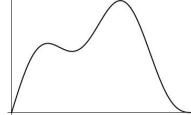
$$\sum_{n=2}^{6} \frac{1}{n(n+1)} \le \int_{1}^{6} \frac{dx}{x(x+1)}$$



10. (8 points, 2/3/3)

This problem concerns the curve

$$y = 2\sin x + \sin 2x, \qquad 0 \le x \le \pi$$



- (a) Give an integral for the length of the curve. You do not need to evaluate the integral.
- (b) Give an integral for the area of the surface obtained by rotating the curve about the x-axis. You do not need to evaluate the integral.
- (c) Give an integral for the area of the surface obtained by rotating the curve about the y-axis. You do not need to evaluate the integral.

11. (8 points) Short answer.

- (a) Suppose that $c(x) = \sum_{n=0}^{\infty} c_n x^n$ converges for x = -4 but diverges for x = 6.
 - i. $\sum_{n=0}^{\infty} (-1)^n c_n$ (absolutely converges/ conditionally converges/diverges).
 - ii. $\sum_{n=0}^{\infty} (-7)^n c_n$ (absolutely converges/ conditionally converges/diverges).

- (b) Calculate the binomial coefficient $\begin{pmatrix} -3\\4 \end{pmatrix} =$
- (c) Recall that $\frac{\pi}{4} = \tan^{-1}(1) = \sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1}$. By the Alternating Series Estimation, how accurate is $1 \frac{1}{3} + \frac{1}{5} \frac{1}{7} + \frac{1}{9} = \frac{263}{315}$ to the actual value of $\frac{\pi}{4}$?
- 12. (10 points) Find a series solution to the integral

$$\int_{-1}^{1} \sin(x^2) \, dx$$

13. (10 points each) Find the radius and interval of convergence for the power series. Be sure to indicate which points converge absolutely and which converge conditionally.

(a)
$$\sum_{n=0}^{\infty} \frac{(x-2)^n}{1 \cdot 3 \cdot 5 \cdots (2n+1)}$$

(b)
$$\sum_{n=0}^{\infty} \frac{(3x-2)^n}{n}$$

- 14. (10 points) Give the Taylor polynomial with degree 2 centered at 1 for $f(x) = \sqrt[3]{x}$. Then use Taylor's Inequality to estimate the accuracy of this approximation for $\sqrt[3]{2}$.
- 15. (12 points) Determine a power series centered at 0 for

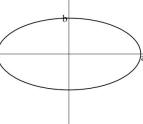
$$f(x) = \sin^{-1}(x^2)$$

and use it to determine the 104-th derivative of $\sin^{-1} x$ at 0. You may find the following useful

$$\binom{-\frac{1}{2}}{n} = (-1)^n \frac{(1)(3)(5)\cdots(2n-1)}{2^n n!}$$

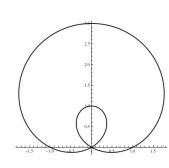
16. (9 points, 3 points each) Recall that the follow parametric equations model a particle traveling counter-clockwise about an ellipse at one rev/ 2π unit time starting at the point (a,0).

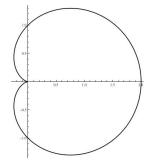
 $x = a\cos t$ $y = b\sin t$

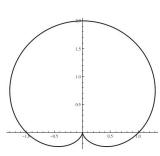


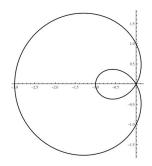
- (a) What is the slope of the tangent line when $t = \frac{\pi}{4}$?
- (b) Give an integral for the area of the ellipse using this set of parametric equations. You do not need to solve the integral.
- (c) Give an integral for the circumference of the ellipse using this set of parametric equations. You do not need to solve the integral.
- 17. (4 points) Match the graphs to their corresponding polar equations.

 $r = \sin \theta$ $r = \cos \theta$ $r = 1 + 2\sin \theta$ $r = 1 - 2\cos \theta$

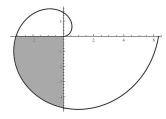








18. (5 points) Find the area of the shaded region of $r = e^{-\theta}$.



Extra Credit (10 points)

Recall that hyperbolic cosine is defined by

$$\cosh(x) = \frac{e^x + e^{-x}}{2}$$

If we let the imaginary number $i=\sqrt{-1}$, use power series to establish the identity

$$\cos(ix) = \cosh(x)$$