
Math 231/EL1 Final

UIUC, May 7, 2013

1. Evaluate the integral.

(a)

∫
x sin(3x) dx

Solution: We will use integration by parts with u = x and dv = sin(3x) dx
and so du = dx and v = −1

3
cos(3x):∫

x sin(3x) dx = −x
3

cos(3x)+
1

3

∫
cos(3x) dx = −x

3
cos(3x)+

1

9
sin(3x)+C

(b)

∫
sec4(5x) dx

Solution: We use the trigonometric identity tan2 θ + 1 = sec2 θ and the u
substitution u = tan(5x):∫

sec4(5x) dx =

∫
sec2(5x) sec2(5x) dx

=

∫ (
tan2(5x) + 1

)
sec2(5x) dx

=

∫ (
u2 + 1

) 1

5
du

=
1

5

(
u3

3
+ u

)
+ C

=
1

5

(
1

3
tan3(5x) + tan(5x)

)
+ C

2. (8 points each) Evaluate the integral.

(a)

∫
3 cos5 α√

sinα
dα

Solution: We wish to use the u substitution u = sinα and to aid us
in this we factor out a copy of cosα and use the trigonometric identity



cos2 θ = 1− sin2 θ to rewrite:∫
3 cos5 α√

sinα
dα = 3

∫
(1− sin2 α)2√

sinα
cosα dα

= 3

∫
(1− u2)2

u
1
2

du

= 3

∫
u−

1
2 − 2u

3
2 + u

7
2 du

= 3

(
u

1
2

1
2

− 2
u

5
2

5
2

+
u

9
2

9
2

)
+ C

= 6(sinα)
1
2 − 24

5
(sinα)

5
2 +

2

3
(sinα)

9
2 + C

(b)

∫
dx

(25 + x2)
3
2

Solution: We use the trigonometric substitution x = 5 tan θ:∫
dx

(25 + x2)
3
2

dx =

∫
5 sec2 θ

(25 + 25 tan2 θ)
3
2

dθ

=
5

53

∫
sec2 θ

(
√

1 + tan2 θ)3
dθ

=
1

25

∫
dθ

sec θ
=

1

25

∫
cos θ dθ

=
1

25
sin θ + C

=
1

25

(
x√

25 + x2

)
+ C
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3. (8 points each) Evaluate the integral.

(a)

∫
x2

x2 + 4
dx

Solution: We begin with long division:

x2

x2 + 4
= 1 +

−4

x2 + 4

and then integrate with the aid of the u substitution u = x
2
:∫

x2

x2 + 4
dx =

∫
dx− 4

∫
dx

x2 + 4

= x−
∫

dx(
x
2

)2
+ 1

= x− 2 tan−1
(x

2

)
+ C

(b)

∫
x+ a

x2 − x
dx

Solution: We use a partial fraction decomposition from x2− x = x(x− 1):

x+ a

x2 − x
=
−a
x

+
1 + a

x− 1∫
x+ a

x2 − x
dx = −a

∫
dx

x
+(1+a)

∫
dx

x− 1
= −a ln |x|+(1+a) ln |x−1|+C

4. (5 points) Determine whether the integral is convergent or divergent. If it is
convergent, evaluate it.∫ 2

−1

dx

x11

Solution: The integral is improper at 0.∫ 2

−1

dx

x11
= lim

b→0−

∫ b

−1
x−11 dx+ lim

a→0+

∫ 2

a

x−11 dx

= lim
b→0−

1

b10
+ 1 + lim

a→0+

1

210
− 1

a10
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Neither of these limits exits ( lim
b→0−

1

b10
=∞ while lim

a→0+
− 1

a10
= −∞) and so the

entire integral is divergent.

5. (7 points) Determine whether the integral is convergent or divergent. If it is
convergent, evaluate it.∫ ∞
0

xe−3x dx

Solution: The integral is only improper at ∞. We can integrate this using the
method of parts with u = x and dv = e−3x dx and so v = −1

3
e−3x:∫

xe−3x dx = −x
3
e−3x +

1

3

∫
e−3x dx

= −x
3
e−3x − 1

9
e−3x + C∫ ∞

0

xe−3x dx = lim
b→∞

∫ b

0

xe−3x dx

= lim
b→∞
− b

3e3b
− 1

9e3b
+

1

9

Since ex → ∞ as x → ∞ we easily see that lim
b→∞

1

9e3b
= 0 and we can use

L’Hôpital’s rule to the indefinite form
∞
∞

to determine

lim
b→∞

b

3e3b
= lim

b→∞

1

9e3b
= 0

and so the improper integral evaluates to 1
9
.

6. (11 points each)

Determine if the series is absolutely convergent, conditionally convergent
or divergent. Be sure to show your reasoning. No work, no credit.

(a)
∞∑
n=5

1√
n3 + 30n

Solution: Since all the terms are positive, the series can only absolutely
converge or diverge.

4



For large values of n, this integral will tend to behave like 1√
n3

= 1

n
3
2

which

is a convergent p-series since 3
2
> 1. More specifically, we can use a limit

comparison test with 1

n
3
2

or easier still, a simple comparison test since

0 ≤ 1√
n3 + 30n

≤ 1√
n3

=
1

n
3
2

and since
∞∑
n=5

1

n
3
2

converges the original series converges also and hence

absolutely converges.

(b)
∑∞

n=2(−1)n n+3
n

Solution: For large values of n, n+3
n
∼ 1

1
= 1 and so we do not expect this

series to converge. More specifically,

lim
n→∞

n+ 3

n
= lim

n→∞

1 + 3
n

1
= 1

is not 0 and so by the n-th term test the series diverges.

7. (11 points each)

Determine if the series is absolutely convergent, conditionally convergent
or divergent. Be sure to show your reasoning. No work, no credit.

(a)
∞∑
n=1

n2

7n

Solution: Since all the terms of this series are positive, the series an only
absolutely converge or diverge. We will use the Ratio test:

lim
n→∞

(n+1)2

7n+1

n2

7n

= lim
n→∞

1

7

(
1 +

1

n

)2

=
1

7

Since 1
7
< 1 the series absolutely converges by the Ratio test.
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(b)
∞∑
n=2

1

ln(nn)

Solution: We will use the integral test. If f(x) = ln(xx) = x lnx then
f ′(x) = ln x+1 > 0 for x ≥ 2 and so 1

ln(xx)
is positive and decreasing (so we

can apply the test). To evaluate the integral, we will use a u-substitution
with u = lnx:∫

dx

ln(xx)
=

∫
dx

x lnx
=

∫
du

u
= ln |u|+ C = ln | lnx|+ C

and so ∫ ∞
2

d

ln(xx)
=
[

lim
b→∞

ln | lnx|
]b
2

= lim
b→∞

ln | ln b| − ln(ln 2)

Since lnx→∞ as x→∞, lim
b→∞

ln | ln b| =∞ and the integral is divergent.

Thus, by the Integral Test, the series diverges also.

8. (5 points) Show that for any number r 6= 1 and positive integer k,

1 + r + r2 + · · ·+ rk =
1− rk+1

1− r

Solution:

(1 + r + r2 + · · ·+ rk)(1− r) = 1 · (1− r) + r(1− r) + r2(1− r) + · · ·+ rk(1− r)
= (1− r) + (r − r2) + (r2 − r3) + · · ·+ (rk − rk+1)

= 1 + (−r + r) + (−r2 + r2) + · · ·+ (−rk + rk)− rk+1

= 1 + 0 + 0 + · · ·+ 0− rk+1

= 1− rk+1

and if r 6= 1 we can divide this equality by (1− r).

9. (3 points) Draw on the diagram and give a brief explanation why

6∑
n=2

1

n(n+ 1)
≤
∫ 6

1

dx

x(x+ 1)

6



f(x) =
1

x(x+ 1)

Solution:

Each of the rectangles has width 1, and their heights are determined by the
function f(x) = 1

x(x+1)
at the values 2, 3, . . . , 6 and so the sum of the area of

the rectangles is

1 · 1

2(2 + 1)
+ 1 · 1

3(3 + 1)
+ · · ·+ 1 · 1

6(6 + 1)
=

6∑
n=2

1

n(n+ 1)

which by the diagram is less than the total area under the graph from 1 to 6,
which is the integral from 1 to 6.
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10. (8 points, 2/3/3)

This problem concerns the curve

y = 2 sin x+ sin 2x, 0 ≤ x ≤ π

(a) Give an integral for the length of the curve. You do not need to evaluate
the integral.

(b) Give an integral for the area of the surface obtained by rotating the curve
about the x-axis. You do not need to evaluate the integral.

(c) Give an integral for the area of the surface obtained by rotating the curve
about the y-axis. You do not need to evaluate the integral.

Solution: The key thing is to determine that we want to integrate with
respect to x and then by factoring out a dx:

ds =
√
dx2 + dy2 =

√
1 +

(
dy

dx

)2

dx

compute
dy

dx
= 2 cos x+ 2 cos 2x

(a)

∫
ds =

∫ π

0

√
1 + (2 cosx+ 2 cos 2x)2 dx

(b)

∫
y ds =

∫ π

0

(2 sinx+ sin 2x)

√
1 + (2 cosx+ 2 cos 2x)2 dx

(c)

∫
x ds =

∫ π

0

x

√
1 + (2 cosx+ 2 cos 2x)2 dx

11. (8 points) Short answer.

(a) Suppose that c(x) =
∑∞

n=0 cnx
n converges for x = −4 but diverges for

x = 6.

i.
∑∞

n=0(−1)ncn (absolutely converges/ conditionally converges/diverges).

Solution: Since the series is centered at 0 and converges at x = −4 we
know that the series coverges absolutely at least for all x ∈ (−4, 4) and
in particular when x = −1 and so

∑∞
n=0(−1)ncn converges absolutely.
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ii.
∑∞

n=0(−7)ncn (absolutely converges/ conditionally converges/diverges).

Solution: Since the series is centered at 0 and diverges at x = 6 we
know that the series diverges at least for all |x| > 6 and in particular
when x = −7 and so

∑∞
n=0(−7)ncn diverges.

(b) Calculate the binomial coefficient

(
−3

4

)
=

Solution:(
−3

4

)
=

(−3)(−3− 1)(−3− 2)(−3− 3)

4!
=

3 · 4 · 5 · 6
1 · 2 · 3 · 4

= 15

(c) Recall that π
4

= tan−1(1) =
∑∞

n=0
(−1)n
2n+1

. By the Alternating Series Esti-

mation, how accurate is 1 − 1
3

+ 1
5
− 1

7
+ 1

9
= 263

315
to the actual value of

π
4
?

Solution: By the Alternating Series estimation, we consider the next term

of the series, or (−1)5
2(5)+1

= − 1
11

, and so the sum is an over estimation by no

more than 1
11

.

12. (10 points) Find a series solution to the integral∫ 1

−1
sin(x2) dx

Solution: We recall that

sinx =
∞∑
n=0

(−1)n
x2n+1

(2n+ 1)!
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and that it has infinite radius. Thus, using term-by-term integration∫ 1

−1
sin(x2) dx =

∫ 1

1

(
∞∑
n=0

(−1)n
(x2)2n+1

(2n+ 1)!

)
dx

=
∞∑
n=0

(−1)n
1

(2n+ 1)!

∫ 1

−1
x4n+2 dx

=
∞∑
n=0

(−1)n
1

(2n+ 1)!

(
x4n+3

4n+ 3

∣∣∣∣1
−1

)

=
∞∑
n=0

(−1)n
1

(2n+ 1)!

2

(4n+ 3)

13. (10 points each) Find the radius and interval of convergence for the power
series. Be sure to indicate which points converge absolutely and which converge
conditionally.

(a)
∞∑
n=0

(x− 2)n

1 · 3 · 5 · · · (2n+ 1)

Solution: We find the radius by using the Ratio Test:

lim
n→∞

∣∣∣ (x−2)n+1

1·3···(2n+1)·(2(n+1)+1)

∣∣∣∣∣∣ (x−2)n
1·3···(2n+1)

∣∣∣ = |x−2| lim
n→∞

1 · 3 · · · (2n+ 1)

1 · 3 · · · (2n+ 1)(2n+ 3)
= |x−2| lim

n→∞

1

2n+ 3
= 0

Thus, the series converges absolutely for all values of x. The radius is
∞ and the interval of convergence is (−∞,∞) (there are no endpoints to
check).

(b)
∞∑
n=0

(3x− 2)n

n

Solution: We find the radius by using the Ratio Test:

lim
n→∞

∣∣∣ (3x−2)n+1

n+1

∣∣∣∣∣∣ (3x−2)nn

∣∣∣ = |3x− 2| lim
n→∞

n

n+ 1
= |3x− 2| lim

n→∞

1

1 + 1
n

= |3x− 2|
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The series converges absolutely when |3x − 2| < 1 or

∣∣∣∣x− 2

3

∣∣∣∣ < 1

3
. Thus

the series has radius 1
3

with center 2
3
. The endpoints are at 2

3
− 1

3
= 1

3
and

2
3

+ 1
3

= 1.

When x = 1 we have the series

∞∑
n=0

(3(1)− 2)n

n
=
∞∑
n=0

1

n

which diverges since it is the Harmonic Series (or a p-series with p = 1).

When x = 1
3

we have the series

∞∑
n=0

(3(1/3)− 2)n

n
=
∞∑
n=0

(−1)n

n

This is the alternating Harmonic series, which converges conditionally (it
converges by the Alternating Series test but does not absolutely converge
since the absolute values produce the Harmonic series).

The interval of convergence is [1
3
, 1).

14. (10 points) Give the Taylor polynomial with degree 2 centered at 1 for f(x) =
3
√
x.

Then use Taylor’s Inequality to estimate the accuracy of this approximation for
3
√

2.

Solution: We first compute the first three derivatives of f :

Derivative Function At 1

f x
1
3 1

f ′ 1
3
x−

2
3

1
3

f ′′ −2
9
x−

5
3 −2

9

f (3) 10
27
x−

8
3

Thus, the degree 2 Taylor polynomial for f at 1 is

T2f = 1 +
1

3
(x− 1) +

−2
9

2!
(x− 1)2 = 1 +

(x− 1)

3
− (x− 1)2

9

11



By Taylor’s Estimation Theorem we know that

f(x)− T2f(x) =
f (3)(c)

3!
(x− 1)3

for some c between 1 and x. Thus, when x = 2

∣∣∣ 3
√

2− T2f(2)
∣∣∣ =

∣∣∣∣∣ 1027c−
8
3

3!
(2− 1)3

∣∣∣∣∣ =
5

81

1

c
8
3

for some c between 1 and 2. Since 8
3
> 1, x

8
3 is increasing for x > 0 and then

1

x
8
3

is decreasing on [1, 2]. Thus, the largest 1

x
8
3

can be on [1, 2] is when x = 1

or 1

1
8
3

= 1. So ∣∣∣ 3
√

2− T2f(2)
∣∣∣ =

5

81

1

c
8
3

≤ 5

81

15. (12 points) Determine a power series centered at 0 for

f(x) = sin−1(x2)

and use it to determine the 104-th derivative of sin−1 x at 0. You may find the
following useful (

−1
2

n

)
= (−1)n

(1)(3)(5) · · · (2n− 1)

2nn!

Solution: We begin by recalling that

d

dx
sin−1 x2 =

2x√
1− x2

= 2x(1− x2)−
1
2

and the Binomial Series

(1 + x)k =
∞∑
n=0

(
k
n

)
xn
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which has radius 1. Thus,

sin−1 x2 = C +

∫
2x(1− x2)−1 dx

= C +

∫ ( ∞∑
n=0

2x

(
−1

2

n

)
(−x2)n

)
dx

= C +
∞∑
n=0

2

(
−1

2

n

)
(−1)n

∫
x2n+1 dx

= C +
∞∑
n=0

2

(
−1

2

n

)
(−1)n

x2n+2

2n+ 2

When x = 0 we find 0 = sin−1 0 = C + 0 and so C = 0 and

sin−1 x2 =
∞∑
n=0

2

(
−1

2

n

)
(−1)n

x2n+2

2n+ 2

for |x| < 1. Recall that if f(x) =
∑∞

n=0 cn(x− a)n with radius not 0 then cn =
f (n)(a)
n!

or f (n)(a) = n!cn. Thus, the 104-th derivative is 104! times the coefficient
in our power series corresponding to x to the 104-th power, or 2n+ 2 = 104 or
n = 101. Thus, the 104-th derivative is

104! · 2
(
−1

2

101

)
(−1)101

1

2(101) + 2
= 104! · 2 · (−1)101

(1)(3)(5) · · · (2(100)− 1)

2100100!
(−1)101

1

2(101) + 2

=
(101)(103)(104)(1)(3)(5) · · · (199)

2100

16. (9 points, 3 points each) Recall that the follow parametric equations model a
particle traveling counter-clockwise about an ellipse at one rev/2π unit time
starting at the point (a, 0).

x = a cos t y = b sin t

(a) What is the slope of the tangent line when t = π
4
?
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Solution: The slope of the tangent line is given by dy
dx

:

dy

dx
=

dy
dt
dx
dt

=
b cos t

−a sin t

When t = π
4

the slope is
b cos(π

4
)

−a sin(π
4
)

= − b
a
.

(b) Give an integral for the area of the ellipse using this set of parametric
equations. You do not need to solve the integral.

Solution: The two issues here are the bounds of integration and the ori-
entation. Considering when t = 0, π

2
, π we see that as t goes from 0 to π

we trace out along the top edge of the ellipse. However, dx
dt

= −a sin t ≤ 0
and so the orientation is reversed (use −dt). Hence:

A = 2

∫
y dx = 2

∫ π

0

b sin t(−a sin t)(−dt)

(c) Give an integral for the circumference of the ellipse using this set of para-
metric equations. You do not need to solve the integral.

Solution: As t goes from 0 to 2π we trace once about the ellipse. Thus,

L =

∫
ds =

∫ √
dx2 + dy2 =

∫ √
(
dx

dt
)2 + (

dy

dt
)2 dt =

∫ 2π

0

√
(−a sin t)2 + (b cos t)2 dt

17. (4 points) Match the graphs to their corresponding polar equations. (Mistake
on the Exam, only two of these match–correction was made during the exam).

r = sin θ r = cos θ r = 1 + 2 sin θ r = 1− 2 cos θ
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18. (5 points) Find the area of the shaded region of r = eθ.

Solution: To find area in polar coordinates

A =

∫
1

2
r2 dθ

The bounds of integration are from π to 3π
2

and so

A =

∫ 3π
2

π

1

2

(
eθ
)2
dθ

=
1

2

∫ 3π
2

π

e2θ dθ

=
1

4
e2θ
∣∣∣∣ 3π2
π

=
1

4

(
e3π − e2π

)

Extra Credit (10 points)

Recall that hyperbolic cosine is defined by

cosh(x) =
ex + e−x

2

If we let the imaginary number i =
√
−1, use power series to establish the

identity
cos(ix) = cosh(x)

Solution: Recall that

cosx =
∞∑
n=0

(−1)n
x2n

(2n)!
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and so

cos(ix) =
∞∑
n=0

(−1)n
(ix)2n

(2n)!
=
∞∑
n=0

(−1)n(i)2n
x2n

(2n)!

Now (i)2n = (i2)n = (−1)n, and (−1)n(−1)n = (−1)2n = ((−1)2)n = 1. Thus,
(−1)n(i)2n = 1 and

cos(ix) =
∞∑
n=0

x2n

(2n)!

On the other hand, recalling that

ex =
∞∑
n=0

xn

n!

we compute

cosh(x) =
1

2

(
ex + e−x

)
=

1

2

(
∞∑
n=0

xn

n!
+
∞∑
n=0

(−x)n

n!

)

=
1

2

∑
n=0

xn + (−1)nxn

n!

=
∞∑
n=0

(1 + (−1)n)xn

2 · n!

When n is even (1 + (−1)n) = 2 and when n is odd (1 + (−1)n) = 0. Thus, this
series has only even terms n = 2k and so

coshx =
∞∑
k=0

2 · x2k

2 · (2k)!
=
∞∑
k=0

x2k

(2k)!
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