MATH231 Spring 2022 Midterm 2 (50 points)

- No notes, calculators, or other aids are allowed.
- Read instructions carefully and write your answers in the space provided.
- There are 24 questions in total. You have 45 minutes to answer them.
- To receive full credit, you must show all of your work. (That is, you are supposed to justify any formula which haven't been given in class or derived in homework.)
- You may use a different method other than the one asked in the question. However, the maximum points you can get will be half of the total points.

Integrals $I = \int f(u) du$ containing square roots, where a is a positive number.

f(u)	I
$\sqrt{a^2 - u^2}$	$\frac{u\sqrt{a^2 - u^2} + a^2 \arcsin(u/a)}{2} + C$
$\sqrt{u^2 - a^2}$	$\frac{u\sqrt{u^2 - a^2} - a^2 \ln\left u + \sqrt{u^2 - a^2} \right }{2} + C$
$\frac{1}{\sqrt{u^2 - a^2}}$	$\ln\left u+\sqrt{u^2-a^2}\right +C$
$\sqrt{a^2 + u^2}$	$\frac{u\sqrt{a^2 + u^2} + a^2 \ln\left u + \sqrt{a^2 + u^2}\right }{2} + C$
$\frac{1}{\sqrt{a^2 + u^2}}$	$\ln\left u+\sqrt{a^2+u^2}\right +C$

Q1–Q2. Arc length and the surface of revolution.

1. (10 points) Compute the <u>arc length</u> of the curve $y = \frac{x^2}{4} - \frac{\ln x}{2}$ for $1 \le x \le e$.

2. (10 points) Using surface of revolution integral to compute the <u>surface area</u> obtained by rotating the curve $y = \sqrt{r^2 - x^2}$ about the x-axis, where r > 0, constant and $-r \le x \le r$.

Q3–Q6. Series

3. (6 points) Compute $\sum_{n=0}^{\infty} \sqrt{5}^{1-2n} 2^{n+2}$. (Careful: n start from 0.)

4. (8 points) Use the divergence test to determine if $\sum_{n=1}^{\infty} \left(1 + \frac{1}{2n}\right)^n$ converges or not.

5. (10 points) Use the integral test to determine if $\sum_{n=1}^{\infty} ne^{-n^2}$ converges or not.

6. (6 points) Use the comparison test to determine if $\sum_{n=1}^{\infty} \frac{n}{\sqrt{n^6 + n}}$ converges or not.