Consider the vector field F on \mathbb{R}^2 shown below right. For each part, circle the best answer. (1 point each)

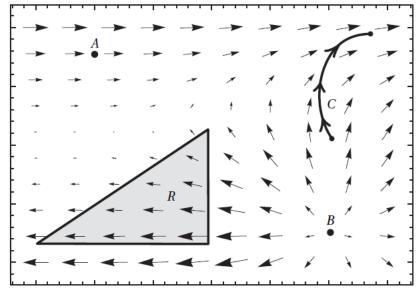
(a) The line integral $\int_C \mathbf{F} \cdot d\mathbf{r}$ is:

b) At A, the vector curl **F** is:

$$\langle 1, 0, 0 \rangle$$
 $\langle 0, 0, -1 \rangle$ $\langle 0, 0, 1 \rangle$

(c) At B, the divergence div F is:

d) If $\mathbf{F} = \langle P, Q \rangle$, then $\iint_R \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \ dA$ is:



(e) The vector field **F** is conservative: True False

Question 2

Consider the surfaces *S* and *H* show below right; the boundary of *S* is the unit circle in the *xy*-plane, and *H* has no boundary. For each part, circle the best answer.

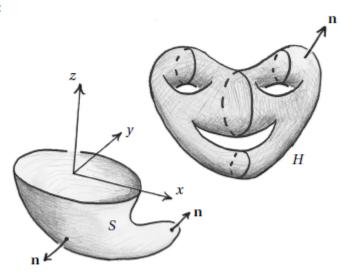
(a) For $\mathbf{F} = \langle yz, xz + x, z \rangle$, the integral $\iint_H \mathbf{F} \cdot \mathbf{n} \ dA$ is:

(b) The flux of curl $F = \langle -x, y, 1 \rangle$ through H is:

(c) The integral $\iint_S (\operatorname{curl} \mathbf{F}) \cdot d\mathbf{S}$ is:

(d) For $G = \langle y, z, 2 \rangle$, the integral $\iint_S G \cdot \mathbf{n} \ dA$ is:

$$-2\pi$$
 $-\pi$ 0 π 2π (2 points)



Let $\mathbf{F}(x, y, z) = \left\langle \frac{x^3}{3}, \ x^2 \cos(z) + \frac{y^3}{3}, \ \frac{z^3}{3} \right\rangle$ and let S denote the surface defined by $x^2 + y^2 + z^2 = 1$, equipped with the inward-pointing unit normal vector field \mathbf{n} . Compute $\iint_S \mathbf{F} \cdot \mathbf{n} \ dA$ by any valid method. (6 **points**)

$$\iint_{S} \mathbf{F} \cdot \mathbf{n} \ dA =$$

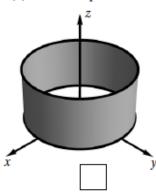
Question 4

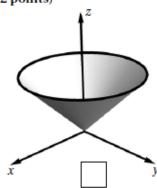
Let C be the oriented curve in \mathbb{R}^2 shown at right. For the vector field $F(x,y)=(x^3,x^2)$, use Green's theorem to evaluate $\int_C \mathbf{F} \cdot d\mathbf{r}$. **(6 points)**

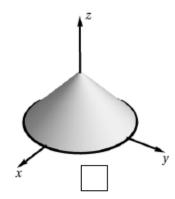
 $\begin{array}{c}
C \\
\end{array}$ $\begin{array}{c}
(2,1) \\
\end{array}$

Consider the surface S parameterized by $\mathbf{r}(u, v) = \langle \cos u, \sin u, v \rangle$ for $0 \le u \le 2\pi$ and $0 \le v \le 1$.

(a) Mark the picture of S below. (2 points)







(b) Consider the vector field $\mathbf{F} = \langle yz, -xz, 1 \rangle$ which has $\operatorname{curl} \mathbf{F} = \langle x, y, -2z \rangle$. Directly evaluate $\iint_S (\operatorname{curl} \mathbf{F}) \cdot \mathbf{n} \ dS$ via the given parameterization, where \mathbf{n} is the outward normal vector field. (4 points)

$$\iint_{S} (\operatorname{curl} \mathbf{F}) \cdot \mathbf{n} \ dS =$$

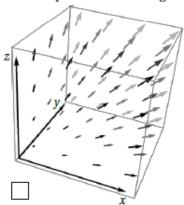
(c) Check your answer in (b) using Stokes' Theorem. (4 points)

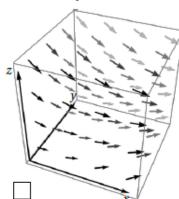
For each problem, circle the best answer. (1 point each)

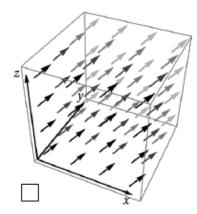
(a) Consider the vector field $F = \langle 1, x, -z \rangle$. The vector field F is:

conservative not conservative

b) Mark the plot of F on the region where each of x, y, z is in [0,1]:



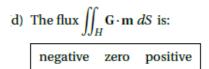


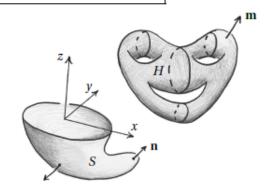


(c) For the leftmost vector field in part (b) is the divergence:

negative positive zero

Let S and H be the surfaces at right; the boundary of S is the unit circle in the xy-plane, and H has no boundary. Let $G = \langle x, y, z \rangle$.





[e) The flux $\iint_S \mathbf{G} \cdot \mathbf{n} \, dS$ is: negative zero positive

(f) The flux $\iint_S (\text{curl } \mathbf{G}) \cdot \mathbf{n} \ dS$ is: negative zero