Math 241: Exam #1

Name:	
NetID:	
UIN:	

• You do not need to show work on multiple choice questions. Otherwise, when space is provided, **show work which justifies your answer**.

- No calculators, notes, books, etc... are permitted.
- The exam lasts **60 minutes**.

Question 1 Consider the vector $\mathbf{n} = \langle -2, 2, 1 \rangle$ and points P = (2, -2, -3) and Q = (0, 1, 0). **(7 points)**

(a) Find the equation of the plane through Q with normal vector \mathbf{n} .

$$M -2x + 2(y-1) + 7 = 0$$

(b) Find the component of \overrightarrow{QP} along **n**.

the component of
$$\overrightarrow{QP}$$
 along \overrightarrow{n} .

COMP \overrightarrow{n} \overrightarrow{OP} \overrightarrow{N} $\overrightarrow{N$

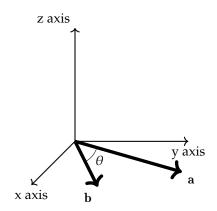
$$=\frac{-4-6-3}{\sqrt{4+4+1}}$$

$$comp_{\mathbf{n}}(\overrightarrow{QP}) = \boxed{ - \sqrt{3} / 3}$$

(c) Find the distance from the point *P* to the plane from part (a).

Question 2 The figure shows two vectors **a** and **b** in the *xy*-plane.

Their lengths are $|\mathbf{a}| = 7$ and $|\mathbf{b}| = 6$. The angle between them is $\theta = 30^{\circ}$. (5 points)



 $|\mathbf{a} \times \mathbf{b}| =$

$\mathbf{n} \mathbf{u} \mid \mathbf{a} \wedge \mathbf{b} \mid$.						
lå×b/	٤	ā \b sin ⊖	\Rightarrow	luxb	7	7.6

- (b) The x component of $\mathbf{a} \times \mathbf{b}$ is (c) The y component of $\mathbf{a} \times \mathbf{b}$ is (d) The z component of $\mathbf{a} \times \mathbf{b}$ is negative negative
- negative zero zero zero positive positive positive

Question 3 Consider the function $f(x,y) = \sin^2(x) \left(\frac{y^2}{x^2 + 2y^2} \right)$ for $(x,y) \neq (0,0)$. Use the *Squeeze Theorem* to determine whether the limit below exists. **(5 points)**

(a) Does the limit $\lim_{(x,y)\to(0,0)} f(x,y)$ exist? Circle your answer: \bigvee

If the limit exists, determine its value (write DNE if it does not exist).

$$\lim_{(x,y)\to(0,0)} f(x,y) = \bigcirc$$

(b) Give a complete justification for your answer using the *Squeeze Theorem*.

$$0 \le \sin^2(x) \left(\frac{y^2}{x^2 + 2y^2} \right) \le \sin^2(x)$$

Since $\lim_{(x,y) \to (0,0)} \sin^2(x) = 0$
 $\lim_{(x,y) \to (0,0)} \cot^2(x) = 0$
 $\lim_{(x,y) \to (0,0)} \cot^2(x) = 0$

Question 4 Select the equation for the quadratic surface shown at right. (2 points)

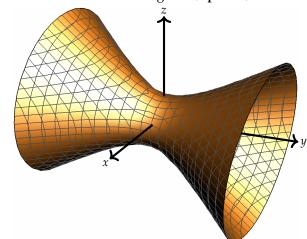
$$x^2 + y^2 + z^2 = 1.$$

$$x^2 + y^2 + z^2 = -1.$$

$$\sum_{x^2 - y^2 + z^2 = 1.}$$

$$x^2 - y^2 + z^2 = -1.$$

$$x^2 + y^2 - z^2 = 1$$



Question 5 f(x,y) is a differentiable function. The tangent plane to the graph of f at the point (1,1,f(1,1)) is given by 3x - y + z = 5. Determine f(1,1), $\frac{\partial f}{\partial x}(1,1)$, and $\frac{\partial f}{\partial y}(1,1)$. (6 points)

$$\Rightarrow$$

$$\frac{\partial f}{\partial x}(1,1) = -3$$

$$\frac{\partial f}{\partial y}(1,1) =$$

$$-f_{x}(l_{1}) \times -f_{y}(l_{1}) + 2 = -f_{x}(l_{1}) -f_{y}(l_{1}) + f(l_{1})$$

Comparing coefficients

Question 6 (8 points)

(a) Let
$$f(x, y) = x^2y + y^3x + 1$$

Compute $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$.

$$\frac{\partial f}{\partial x} = 2xy + y^3$$

$$\frac{\partial f}{\partial y} = x^2 + 3y^2x$$

(b) Suppose x and y are differentiable functions of s and t and let g(s,t)=f(x(s,t),y(s,t)), where f(x,y) is the function in part (a). Use the table of values on the right, to calculate $\frac{\partial g}{\partial s}$ (0,1).

	x	y	$\frac{\partial x}{\partial s}$	$\frac{\partial y}{\partial s}$
(0,1)	-1	-1(4	$\begin{pmatrix} 3 \end{pmatrix}$
(-1, -1)	-3	-2	1	\bigcup_{2}

$$\chi(0,1) = -1 \quad f_{x}(-1,-1) = 2(-1)(-1)-1 = 1 \quad \frac{(-1,-1)}{-3} = 1$$

$$\chi(0,1) = -1 \quad f_{y}(-1,-1) = (-1)^{2} + 3(-1)^{2}(-1) = -2$$

$$g_{s}(0,1) = f_{x}(-1,-1) \times_{s}(0,1) + f_{y}(-1,-1) y_{s}(0,1)$$

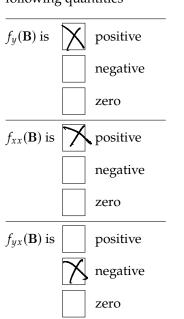
$$= (1)(4) + (-2)(3)$$

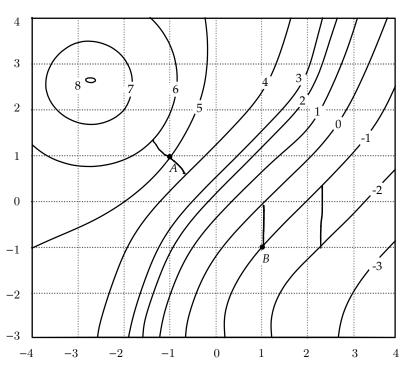
= -2

$$\frac{\partial g}{\partial s}(0, 1) =$$

Question 7 The contour map of a differentiable function f(x, y) is shown. Each level curve is labeled by the corresponding value of f. Choose the best answer for each question below. **(7 points)**

(a) At the point **B**, determine the sign of the following quantities





(b) Let \mathbf{u} be a unit vector with direction $\overrightarrow{\mathbf{BA}}$. Estimate $D_{\mathbf{u}}f(\mathbf{A})$, the directional derivative of f at \mathbf{A} in the direction of \mathbf{u} .

 $\begin{array}{|c|c|} & 4 \\ \hline & 2 \\ \end{array}$

-2

-4

 $D_{u}f(A) \propto \frac{6-4}{1}$