Math 241: Exam #1

Name:			
NetID:			
UIN:			

• You do not need to show work on multiple choice questions. Otherwise, when space is provided, **show work which justifies your answer**.

- No calculators, notes, books, etc... are permitted.
- The exam lasts **60 minutes**.

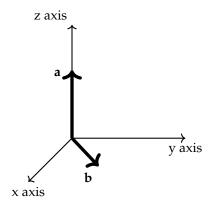
Question 1 Consider the plane $2x + y - 2z = 2$ and points $P = (2, -2, -3)$ and $Q = (1, 0, 0)$.	(7 points)
(a) Find a normal vector n to this plane.	

(b) Find the projection of the vector \overrightarrow{PQ} onto **n**.

$$\operatorname{proj}_{\mathbf{n}}(\overrightarrow{PQ}) =$$

(c) Find the distance from the point P to the plane.

Question 2 The figure shows a vector $\bf a$ in the direction $\bf k$ and a vector $\bf b$ in the xy-plane. Their lengths are $|\bf a|=4$ and $|\bf b|=5$. (5 points)



(a) Find $|\mathbf{a} \times \mathbf{b}|$.

		$ \mathbf{a} \times \mathbf{b} =$
(b) The x component of $\mathbf{a} \times \mathbf{b}$ is	(c) The <i>y</i> component of $\mathbf{a} \times \mathbf{b}$ is	(d) The z component of $\mathbf{a} \times \mathbf{b}$ is
negative	negative	negative
zero	zero	zero
positive	positive	positive

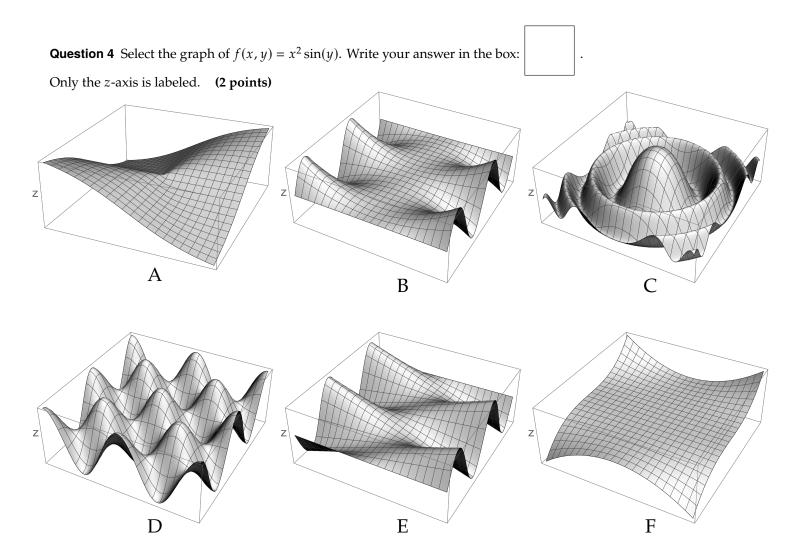
Question 3 Consider the function $f(x,y) = x^2 \cos^2\left(\frac{1}{x^2 + y^2}\right)$ for $(x,y) \neq (0,0)$. Use the *Squeeze Theorem* to determine whether the limit below exists. **(5 points)**

(a) Does the limit $\lim_{(x,y)\to(0,0)} f(x,y)$ exist? Circle your answer: **Yes No**

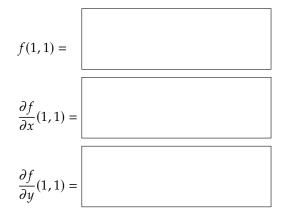
If the limit exists, determine its value (write DNE if it does not exist).

$$\lim_{(x,y)\to(0,0)} f(x,y) =$$

(b) Give a complete justification for you answer using the *Squeeze Theorem*.



Question 5 f(x,y) is a differentiable function. The tangent plane to the graph of f at the point (1,1,f(1,1)) is given by -3x+y+z=4. Determine f(1,1), $\frac{\partial f}{\partial x}(1,1)$, and $\frac{\partial f}{\partial y}(1,1)$. **(6 points)**



Question 6 (8 points)

(a) Let $x(s,t) = t^2 + 3st$ and $y(s,t) = 2t^2s + s^2 - t$. Compute $\frac{\partial x}{\partial s}$ and $\frac{\partial y}{\partial s}$.

$$\frac{\partial x}{\partial s} =$$

$$\frac{\partial y}{\partial s} =$$

(b) Suppose f(x,y) is a differentiable function of x and y and let g(s,t)=f(x(s,t),y(s,t)), where x(s,t) and y(s,t) are the functions in part (a).

Use the table of values on the right, to calculate $\frac{\partial g}{\partial s}$ (0, 1).

	8	f	$\frac{\partial f}{\partial x}$	$\frac{\partial f}{\partial y}$
(0,1)	-2	3	-4	-5
(1,-1)	-3	-2	1	2

$$\frac{\partial g}{\partial s}(0, 1) =$$

Question 7 The contour map of a differentiable function f(x, y) is shown. Each level curve is labeled by the corresponding value of f. Choose the best answer for each question below. **(7 points)**

(a) At the point B , determine the s following quantities	gn of the
$f_x(\mathbf{B})$ is positive	3
negative	$\begin{bmatrix} \begin{bmatrix} -2 & 1 & 1 & 2 & 3 \\ -1 & 0 & 1 & 2 & 4 \end{bmatrix} \end{bmatrix}$
zero	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$f_{yy}(\mathbf{B})$ is positive	
negative	0 / / / / / / 8
zero	
$f_{xy}(\mathbf{B})$ is positive	-1 B 9
negative	-2
zero	_3
(b) Let u be a unit vector with direct direction of u . 4 1 0 -1 -4	-4 -3 -2 -1 0 1 2 3 on \overrightarrow{BA} . Estimate $D_{\bf u}f({\bf A})$, the directional derivative of f at ${\bf A}$ in the