Question 1 Consider the plane $x + 2y - 2z = 1$ and points $P = (2, -2, -3)$ and $Q = (1, 0, 0)$.	(7 points)

(a) Find a normal vector **n** to this plane.

(b) Find the projection of the vector \overrightarrow{PQ} onto **n**.

$$\operatorname{proj}_{\mathbf{n}}(\overrightarrow{PQ}) =$$

(c) Find the distance from the point P to the plane.

Question 2 The figure shows a vector $\bf a$ in the direction $\bf k$ and a vector $\bf b$ in the *xy*-plane. Their lengths are $|\bf a|=4$ and $|\bf b|=5$. (5 points)

(a) Find $|\mathbf{a} \times \mathbf{b}|$.

		$ \mathbf{a} \times \mathbf{b} =$
(b) The x component of $\mathbf{a} \times \mathbf{b}$ is	(c) The y component of $\mathbf{a} \times \mathbf{b}$ is	(d) The z component of $\mathbf{a} \times \mathbf{b}$ is
negative	negative	negative
zero	zero	zero
positive	positive	positive

Question 3 Consider the function $f(x,y) = x^2 \sin^2 \left(\frac{1}{x^2 + y^2}\right)$ for $(x,y) \neq (0,0)$. Use the *Squeeze Theorem* to determine whether the limit below exists. **(5 points)**

(a) Does the limit $\lim_{(x,y)\to(0,0)} f(x,y)$ exist? Circle your answer: **Yes No**

If the limit exists, determine its value (write DNE if it does not exist).

$$\lim_{(x,y)\to(0,0)} f(x,y) =$$

(b) Give a complete justification for your answer using the *Squeeze Theorem*.

Question 5 f(x,y) is a differentiable function. The tangent plane to the graph of f at the point (1,1,f(1,1)) is given by 2x - y + z = 5. Determine f(1,1), $\frac{\partial f}{\partial x}(1,1)$, and $\frac{\partial f}{\partial y}(1,1)$. **(6 points)**

$$f(1,1) = \frac{\partial f}{\partial x}(1,1) = \frac{\partial f}{\partial y}(1,1) = \frac{$$

Question 6 (8 points)

(a) Let $x(s,t) = s^2t + t^3 - s$ and $y(s,t) = 2st - t^2$. Compute $\frac{\partial x}{\partial s}$ and $\frac{\partial y}{\partial s}$.

$$\frac{\partial x}{\partial s} =$$

$$\frac{\partial y}{\partial s} =$$

(b) Suppose f(x, y) is a differentiable function of x and y and let g(s,t) = f(x(s,t),y(s,t)), where x(s,t) and y(s,t) are the functions in part (a).

Use the table of values on the right, to calculate $\frac{\partial g}{\partial s}(0,1)$.

	8	f	$\frac{\partial f}{\partial x}$	$\frac{\partial f}{\partial y}$
(0,1)	-3	3	4	7
(1, -1)	-4	-3	1	5

$$\frac{\partial g}{\partial s}(0, 1) = \boxed{}$$

Question 7 The contour map of a differentiable function f(x, y) is shown. Each level curve is labeled by the corresponding value of f. Choose the best answer for each question below. **(7 points)**

(a) At the point \mathbf{B} , determine the sign of the following quantities	4
$f_x(\mathbf{B})$ is positive	3
negative	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
zero	$\begin{pmatrix} 2 & A & 1 \\ A & & 6 \end{pmatrix}$
$f_{yy}(\mathbf{B})$ is positive	
negative	
zero	
$f_{xy}(\mathbf{B})$ is positive	-1 B 9
negative	-2
zero	-3
(b) Let u be a unit vector with direction \overrightarrow{BA} . Estidirection of u . 4 1 0 -1 -4	-4 -3 -2 -1 0 1 2 3 mate $D_{\mathbf{u}}f(\mathbf{A})$, the directional derivative of f at \mathbf{A} in the