Math 241: Exam #2

Name:			
NetID:			

• When space is provided, **show work which justifies your answer**. You do not need to show work on multiple choice questions unless

otherwise specified.

• No calculators, notes, books, etc... are permitted.

• You do not need to numerically evaluate expressions such as $\sqrt{7}$, 4/13, $\cos(\pi/10)$, etc...

• The exam lasts **60 minutes**, has **6 pages** and consists of **7 questions**.

Question 1.

(9 points) The function f is differentiable and its second derivatives exist and are continuous. The table contains the values of f and its first and second-order partial derivatives at the points A, B, C, and D.

	\int	f_x	f_y	f_{xx}	f_{xy}	f_{yy}
A(0,0)	0	0	1	0	2	1
B(1,1)	2	0	0	1	0	2
C(1,2)	1	0	0	1	1	0
D(2,2)	0	-1	0	0	0	0

(a)	Which of the	points $A(0,0)$.	B(1.1).0	C(1,2), D(2,2)	are critical r	ooints? Mark	all that apply.
(u)	vvincii oi tiic	ponits 21(0,0),	D(1,1),	C(1,2), D(2,2)	are critical p	onits. Maik	an mat appiy.

A	В	M C	D
---	---	-----	---

(b) Use the second derivatives test to determine whether the critical points of *f* (that you found in part (a)) are local minima, local maxima, or saddle points. Write DNE if the corresponding type of critical point does not occur at the points *A* through *D*. *Show your work.*

$$D = \begin{vmatrix} f_{xx} & f_{xy} \\ f_{xy} & f_{yy} \end{vmatrix} = f_{xx} f_{yy} - f_{xy}^{2}$$
at B: $D(B) = 1 \cdot 2 - 0^{2} = 2 > 0$, and $f_{xx} > 0$,

So this is a local minimum

at
$$C: \mathcal{D}(C) = 4.0 - 1 = -1 < 0$$
, so this is a saddle pt.

f has a local minimum at the point(s)

f has a local maximum at the point(s)

f has saddle point(s) at

- (c) Exactly one of the following statements is correct. Which?
 - the function f has an absolute maximum in the disk $\{(x,y) \mid x^2 + y^2 < 1\}$
 - the function f has an absolute maximum in the triangle $\{(x,y) | x \ge 0, y \ge 0, x + y \le 5\}$
 - the function f has an absolute maximum in the whole plane \mathbb{R}^2

Question 2. (2 points) Which of the following is a parametrization of the depicted curve? Mark your answer.

- $\mathbf{r}(t) = \langle \cos t, 2 \sin t, 3 \cos t \rangle, \qquad 0 \le t \le 2\pi$
- $\mathbf{r}(t) = \langle 2\sin t, 2\cos t, \cos(3t) \rangle, \qquad 0 \le t \le 2\pi$ $\mathbf{r}(t) = \langle \cos(4t), 2\sin(4t), t \pi \rangle, \qquad 0 \le t \le 2\pi$
- $\mathbf{r}(t) = \langle t \cos(4t), t, t \sin(4t) \rangle, \qquad 0 \le t \le 2\pi$

Question 3. (4 points) Consider the vector field $\mathbf{F}(x,y) = (6xy^3 + 9)\mathbf{i} + ax^2y^2\mathbf{j}$, where a is some real number. For what value(s) of a is \mathbf{F} conservative?

For
$$\vec{F}$$
 to be conservative, we need $\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$

$$\frac{\partial P}{\partial y} = 18xy^2 \stackrel{?}{=} 2axy^2 = \frac{\partial Q}{\partial x}$$

$$f = 18 \times y^2 = 2a \times y^2 = \frac{00}{00}$$
Equality holds exactly when $a = 9$.

Question 4. (4 points) Exactly two of the following vector fields are *not* conservative. Which two?

Question 5. (5 points) Let g(x,y) be differentiable and consider the vector field $\mathbf{G} = \nabla g$. Suppose C_{PQ} is the line segment from P(-2,1) to Q(1,2), C_{QR} is the line segment from Q(1,2) to P(2,-2), and P(2,-2) to P(2,-2). It is known that P(2,-2) and P(2,-2) are P(2,-2). It is known that P(2,-2) are P(2,-2) and P(2,-2) are P(2,-2) are P(2,-2).

Compute $\int_{C_{PR}} \mathbf{G} \cdot d\mathbf{r}$.

$$\int_{C_{PR}} \vec{G} \cdot d\vec{r} = \int_{C_{PR}} \vec{G} \cdot d\vec{r} = 3 + 0 = 3$$

$$C_{QR}$$

$$C_{QR}$$

$$\int_{C_{PR}} \mathbf{G} \cdot d\mathbf{r} = \boxed{3}$$

Question 6. (8 points) Set up and evaluate an integral to compute the area of a fence built over the parametrized curve $\mathbf{r}(t) = \langle \sin(3t), \cos(3t) \rangle$, with $t \in [0, \pi/6]$, where the height is described by the function $f(x, y) = x^2y + 2$.

Area =
$$\int_{C} f ds$$
, where C is the parametrized curve $\overrightarrow{r}(t) = \langle \sin(3t), \cos(3t) \rangle$
 $\overrightarrow{r}(t) = \langle 3\cos(3t), -3\sin(3t) \rangle$
 $|\overrightarrow{r}(t)| = \sqrt{9\cos^{2}(3t) + 9\sin^{2}3t} = 3$.
Area = $\int_{0}^{\pi/6} (\sin^{2}3t \cos 3t + 2) \cdot 3 dt = G \int_{0}^{\pi/6} dt + \int_{0}^{\pi/6} \sin^{2}3t d(\sin 3t) = G \int_{0}^{\pi/6} dt + \int_{0}^{\pi/6} \sin^{2}3t d(\sin 3t) = G \int_{0}^{\pi/6} dt + \int_{0}^{\pi/6} \sin^{2}3t d(\sin 3t) = G \int_{0}^{\pi/6} dt + \int_{0}^{\pi/6} \sin^{2}3t d(\sin 3t) = G \int_{0}^{\pi/6} dt + \int_{0}^{\pi/6} \sin^{2}3t d(\sin 3t) = G \int_{0}^{\pi/6} dt + \int_{0}^{\pi/6} \sin^{2}3t d(\sin 3t) = G \int_{0}^{\pi/6} dt + \int_{0}^{\pi/6} \sin^{2}3t d(\sin 3t) = G \int_{0}^{\pi/6} dt + \int_{0}^{\pi/6} \sin^{2}3t d(\sin 3t) = G \int_{0}^{\pi/6} dt + \int_{0}^{\pi/6} \sin^{2}3t d(\sin 3t) = G \int_{0}^{\pi/6} dt + \int_{0}^{\pi/6} \sin^{2}3t d(\sin 3t) = G \int_{0}^{\pi/6} dt + \int_{0}^{\pi/6} \sin^{2}3t d(\sin 3t) = G \int_{0}^{\pi/6} dt + \int_{0}^{\pi/6} \sin^{2}3t d(\sin 3t) = G \int_{0}^{\pi/6} dt + \int_{0}^{\pi/6} \sin^{2}3t d(\sin 3t) = G \int_{0}^{\pi/6} dt + \int_{0}^{\pi/6} \sin^{2}3t d(\sin 3t) = G \int_{0}^{\pi/6} dt + \int_{0}^{\pi/6} \sin^{2}3t d(\sin 3t) = G \int_{0}^{\pi/6} dt + \int_{0}^{\pi/6} \sin^{2}3t d(\sin 3t) = G \int_{0}^{\pi/6} dt + \int_{0}^{\pi/6} \sin^{2}3t d(\sin 3t) = G \int_{0}^{\pi/6} dt + \int_{0}^{\pi/6} \sin^{2}3t d(\sin 3t) = G \int_{0}^{\pi/6} dt + \int_{0}^{\pi/6} \sin^{2}3t d(\sin 3t) = G \int_{0}^{\pi/6} dt + \int_{0}^{\pi/6} \sin^{2}3t d(\sin 3t) = G \int_{0}^{\pi/6} dt + \int_{0}^{\pi/6} \sin^{2}3t d(\sin 3t) = G \int_{0}^{\pi/6} dt + \int_{0}^{\pi/6} \sin^{2}3t d(\sin 3t) = G \int_{0}^{\pi/6} dt + \int_{0}^{\pi/6} \sin^{2}3t d(\sin 3t) = G \int_{0}^{\pi/6} dt + \int_{0}^{\pi/6} \sin^{2}3t d(\sin 3t) = G \int_{0}^{\pi/6} dt + \int_{0}^{\pi/6} \sin^{2}3t d(\sin 3t) = G \int_{0}^{\pi/6} dt + \int_{0}^{\pi/6$

Area=

$$\pi + 3$$

Question 7. (8 points) Use Lagrange multipliers to find the absolute minimum and absolute maximum of the function f(x, y) = 2x - y + 2 subject to the constraint $g(x, y) = x^2 + \frac{y^2}{2} = 2$.

Need to solve
$$\nabla f = \lambda \nabla g$$
, or $\nabla g = \vec{0}$.

Note: $\nabla g = \langle 2x, y \rangle$ is zero only at $(0,0)$, which doesn't satisfy the constraint.

So we may assume $\nabla g \neq \vec{0}$.

 $\nabla f = \langle 2, -1 \rangle = \lambda \langle 2x, y \rangle = \lambda \nabla g$

means $\begin{cases} 2 = 2\lambda x \\ -1 = \lambda y \end{cases}$ so $\begin{cases} \lambda x = 1 \\ \lambda y = -1 \end{cases}$

these equations can't be satisfied if $\lambda = 0$, so we may assume $\lambda \neq 0$ then $\alpha = \frac{1}{\lambda}$, $y = -\frac{1}{\lambda}$

Plugging into the constraint, we get
$$g(x,y) = x^2 + \frac{4^2}{2} = \frac{1}{1^2} + \frac{1}{21^2} = \frac{3}{21^2} = 2$$
So $1 = \frac{3}{4}$, $1 = \frac{1}{2}$ (x,y) = $(\frac{2}{15}, -\frac{2}{15})$ and $1 = \frac{4}{15}$ (x,y) = $(\frac{2}{15}, -\frac{2}{15})$ and $1 = \frac{4}{15}$ (x,y) = $(\frac{2}{15}, -\frac{2}{15})$ and $1 = \frac{4}{15}$ (x,y) = $(\frac{2}{15}, \frac{2}{15})$ and $1 = \frac{4}{15}$

maximum value of
$$f = 2\sqrt{3} + 2$$

at the point(s)
$$\left(\frac{2}{\sqrt{3}} - \frac{2}{\sqrt{3}}\right)$$