Math 241: Exam #2

Name:
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e When space is provided, show work which justifies your answer.
You do not need to show work on multiple choice questions unless
otherwise specified.

e No calculators, notes, books, etc... are permitted.

¢ You do not need to numerically evaluate expressions such as
\7,4/13, cos(1t/10), etc...

e The exam lasts 60 minutes, has 6 pages and consists of 7 questions.




Question 1.
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(9 points) The function f is differentiable and its second derivatives / =
. . . . AQO |00 1|0 2 1

exist and are continuous. The table contains the values of f and its

first and second-order partial derivatives at the points A, B, C, and BILD [2[Q ] O] 1 0 2
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(a) Which of the points A(0,0), B(1,1), C(1,2), D(2, 2) are critical points? Mark all that apply.

e 7 v Y < v

(b) Use the second derivatives test to determine whether the critical points of f (that you found in part (a)) are local
minima, local maxima, or saddle points. Write DNE if the corresponding type of critical point does not occur at the
points A through D.

Show your work.
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f has a local minimum at the point(s) @
f has a local maximum at the point(s) /
f has saddle point(s) at C

(c) Exactly one of the following statements is correct. Which?
Q the function f has an absolute maximum in the disk {(x, y) | x> + y?> < 1}
@ the function f has an absolute maximum in the triangle {(x,y)|x >0,y > 0,x + y < 5}

O the function f has an absolute maximum in the whole plane R2



Question 2. (2 points) Which of the following is a parametrization of the depicted curve? Mark your answer.

r(t) = (cost,2sint,3cost), 0<t<2m
r(t) = (2sint,2cost, cos(3t)), 0<t<2m

r(t) = (cos(4t), 2sin(4t),t — ), 0<t<2m
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r(t) = (t cos(4t), t, t sin(4t)), 0<t<2n
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Question 3. (4 points) Consider the vector field F(x, y) = (6xy® + 9)i + ax2y?j, where 4 is some real number. For what
value(s) of a is F conservative? \/;q véj’
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(4 points) Exactly two of the following vector fields are not conservative. Which two?

Question 4.
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Question 6.

(8 points) Set up and evaluate an integral to compute the area of a fence built over the parametrized curve
r(t) = (sin(3t), cos(3t)), with t € [0, 7t/6], where the height is described by the function f(x,y) = x%y + 2.

Area
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Question 7.

f(x,y) = 2x — y + 2 subject to the constraint g(x, y) = x2 + y; =2.
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(8 points) Use Lagrange multipliers to find the absolute minimum and absolute maximum of the function
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