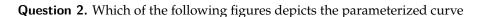
Math 241: Exam #2

Name:		
NetID:		

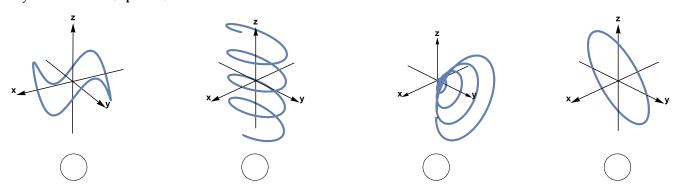
- When space is provided, **show work which justifies your answer**. You do not need to show work on multiple choice questions unless otherwise specified.
- No calculators, notes, books, etc... are permitted.
- You do not need to numerically evaluate expressions such as $\sqrt{7}$, 4/13, $\cos(\pi/10)$, etc...
- The exam lasts **60 minutes**, has **6 pages** and consists of **7 questions**.

Question 1. Consider the function $f(x, y) = 2xy + y^2$. (9 points)
(a) Find one critical point P of f .
critical point $P =$
(b) Heatha Casand Devianting took to determine whether the mitigal maint Dis
(b) Use the Second Derivatives test to determine whether the critical point <i>P</i> is
a local minimum of f ,
a local maximum of f ,
a saddle point of f , or none of the above?
Show your work.
(c) Does the function f have an absolute minimum in the closed unit disk $\{(x,y) x^2 + y^2 \le 1\}$? There is no need to determine the value, if it exists.
Yes
O No
It is impossible to tell from the given information.



 $\mathbf{r}(t) = \langle \cos t, 2 \sin t, 3 \cos t \rangle, \qquad 0 \le t \le 2\pi$?

Mark your answer. (2 points)



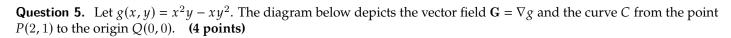
Question 3. Is the vector field $\mathbf{F}(x,y) = \langle 4xy, 2x^2 + 3y^2 \rangle$ conservative? Circle your answer: **Yes No**

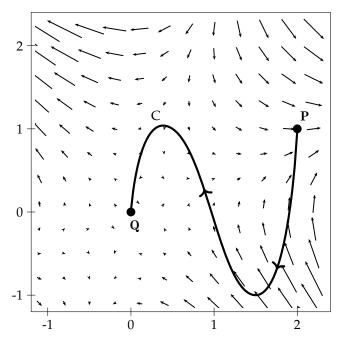
If **F** is conservative, find a potential function f(x, y) for **F**.

If there is no potential function, explain why not and leave the answer box blank. (5 points)

$$f(x,y) =$$

Question 4. Exactly two of the following vector fields are *not* conservative? Which two? **(4 points)** A В C D E F 1111/ В A C D 111111111111 111111111111 111111111111 Ε F





$$\int_C \mathbf{G} \cdot d\mathbf{r} =$$

Question 6. Consider the function f(x,y) = xy and the curve C given by $\mathbf{r}(t) = \langle -3\sin(t), 3\cos(t) \rangle$, $0 \le t \le \pi/2$. Compute $\int_C f(x,y) \, ds$. **(8 points)**

$$\int_C f(x,y)ds =$$

Question 7. Use Lagrange multipliers to find the absolute minimum and the absolute maximum of the function $f(x,t) = -4x + 2t + 5$							
subject to the constraint $g(x, y) = 2x^2 + y^2 = 3$.	f(x,y) = -4x + 2y + 5, (8 points)						
subject to the constraint $g(x, y) = 2x^2 + y^2 = 3$.	(8 points)						
	minimum value of $f =$						
	maniful value of j =						
	at the point(s)						

maximum value of f =

at the point(s)