## Math 241: Exam #2

| Name:  |  |  |  |
|--------|--|--|--|
| NetID: |  |  |  |

**───** 

- When space is provided, **show work which justifies your answer**. You do not need to show work on multiple choice questions unless otherwise specified.
- No calculators, notes, books, etc... are permitted.
- You do not need to numerically evaluate expressions such as  $\sqrt{7}$ , 4/13,  $\cos(\pi/10)$ , etc...
- The exam lasts **60 minutes**, has **6 pages** and consists of **7 questions**.

**Question 1.** Consider the function  $f(x, y) = 2xy + y^2$ . (9 points)

(a) Find one critical point P of f.

Need to solve 
$$\nabla f = \langle 2y, 2x + 2y \rangle = \langle 0, 0 \rangle$$
  

$$\begin{cases} 2y = 0 \\ 2x + 2y = 0 \end{cases} \quad x = 0, \ y = 0$$

critical point 
$$P = \left( O \right)$$

- (b) Use the Second Derivatives test to determine whether the critical point P is
  - $\bigcirc$  a local minimum of f,
  - a local maximum of f,
  - $\bigcirc$  a saddle point of f , or
  - none of the above?

Show your work.

$$D(x_1y) = \begin{vmatrix} f_{xx} & f_{xy} \\ f_{xy} & f_{yy} \end{vmatrix} = \begin{vmatrix} 0 & 2 \\ 2 & 2 \end{vmatrix} = -4 < 0$$

- (c) Does the function f have an absolute minimum in the closed unit disk  $\{(x,y) | x^2 + y^2 \le 1\}$ ? There is no need to determine the value, if it exists.

Yes

- O No
- It is impossible to tell from the given information.

## Question 2. Which of the following figures depicts the parameterized curve

$$\mathbf{r}(t) = \langle \cos t, 2 \sin t, 3 \cos t \rangle, \qquad 0 \le t \le 2\pi$$
?

Mark your answer. (2 points)



**Question 3.** Is the vector field  $\mathbf{F}(x,y) = \langle 4xy, 2x^2 + 3y^2 \rangle$  conservative? Circle your answer:  $\langle \mathbf{Yes} \rangle$ 

If **F** is conservative, find a potential function f(x, y) for **F**.

If there is no potential function, explain why not and leave the answer box blank. (5 points)

Suppose 
$$\overrightarrow{F} = \nabla f$$
, so  $\int_{x} = 4xy$   
 $\int_{y} = 2x^{2} + 3y^{2}$   
Then  $f = \int_{y} 4xy \, dx = 2x^{2}y + g(y)$  for some function  $g(y)$ .  
Now  $\int_{y} = 2x^{2} + g'(y) = 2x^{2} + 3y^{2}$ , so  $g'(y) = 3y^{2}$ .  
 $\Rightarrow g(y) = \int_{y} 3y^{2} \, dy = y^{3} + C$ , for some constant  $C$ .

$$f(x,y) = 2 x^2 y + y^3 + C$$

No

**Question 4.** Exactly two of the following vector fields are *not* conservative? Which two? **(4 points)** 



**Question 5.** Let  $g(x,y) = x^2y - xy^2$ . The diagram below depicts the vector field  $\mathbf{G} = \nabla g$  and the curve C from the point P(2,1) to the origin Q(0,0). **(4 points)** 

Compute 
$$\int_C \mathbf{G} \cdot d\mathbf{r}$$
.

By FTLI,
$$\int_C \mathbf{G} \cdot d\mathbf{r} = g(Q) - g(P) =$$

$$= g(\theta_1 0) - g(2_1 1) = 0 - 2 = -2$$

$$\int_{C} \mathbf{G} \cdot d\mathbf{r} = -2$$



**Question 6.** Consider the function f(x,y) = xy and the curve C given by  $\mathbf{r}(t) = \langle -3\sin(t), 3\cos(t) \rangle$ ,  $0 \le t \le \pi/2$ . Compute  $\int_C f(x,y) \, ds$ . (8 points)

$$\int_C f(x,y)ds = \frac{27}{2}$$

## Question 7. Use Lagrange multipliers to find the absolute minimum and the absolute maximum of the function

$$f(x,y) = -4x + 2y + 5,$$

subject to the constraint  $g(x, y) = 2x^2 + y^2 = 3$ . (8 points)

Need to solve  $\nabla f = \lambda \nabla g$ , or  $\nabla g = \overline{O}$ .

Note:  $\nabla g = \langle 4x, 2y \rangle$  is zero only at (0,0), which doesn't satisfy the constraint.

So we may assume  $\nabla g \neq \overline{O}$ .  $\nabla f = \langle -4, 2 \rangle = \lambda \langle 4x, 2y \rangle = \lambda \nabla g$ means  $\begin{cases} -4 = 4\lambda x \\ 2 = 2\lambda y \end{cases}$  so  $\begin{cases} \lambda x = -1 \\ \lambda y = 1 \end{cases}$ 

these equations can't be satisfied if  $\lambda=0$ , so we may assume  $\lambda\neq 0$  then  $\alpha=-\frac{1}{2}$ ,  $\beta=\frac{1}{2}$ 

Plugging into the constraint, we get
$$g(x,y) = 2x^{2} + y^{2} = 2 \cdot \frac{1}{1^{2}} + \frac{1}{1^{2}} = \frac{3}{1^{2}} = 3$$
So  $x = \pm 1$ 

$$\Rightarrow x = 1 \quad (x,y) = (-1,1) \quad \text{and} \quad f(-1,1) = 4 + 2 + 5 = 11$$

$$\Rightarrow x = -1 \quad (x,y) = (1,-1) \quad \text{and} \quad f(y,-1) = -4 - 2 + 5 = -1$$

maximum value of f =

at the point(s)  $\left( - \right)_{\perp} \left( \right)$