Question 1. Let R be the depicted region above the unit circle x> + y? = 1, below the line y — x = V2, and to the left of the
linex = 1.

(a) (4 points) Find the bounds of integration for //R 2y dA as an iterated

integral
| x4+ 2

.// 2y dA = 2y dy dx.
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Note: The order of integration is already determined.
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(b) (2 points) Evaluate the integral /fR 2y dA as set up in part (a). \
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Question 2. (6 points)
2

1 0
Consider the triple integral / / f(x,y,z)dx dy dz. Itsregion
0 J2-2z J(y-2)2

of integration is depicted; it is bounded by the yz-plane and the planes
with equationsz=1,2x -y +2=0,and y +2z -2 =0.

Determine the limits of integration when changing the order of integration

as
1 p2 (0
/ / / f(x,y,z)dx dy dz
0 J2-2z J(y-2)/2

O o472 {

= f(x,y,z)dzdydx.

—| U - %

Scratch Space




bd 20/n
Question 3. The double integral ”// x — y dA has the form / / ?? dr dO when converted into polar coordinates.
R 0 Jo

(a) (2 points) Mark the box of the picture below which depicts the region R in the xy-plane.
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(b) (3 points) Fill in the missing integrand to convert this integral to polar coordinates. Do not compute the integral!

bd 20/n
Joxmven=[ ]
R 0 0

0% (59— sinb )

dr do
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Question 4. (7 points) Let R be the region in R? that is inside the sphere x? + y* + z? = 4, outside of the sphere
x% 4+ y? + z2 = 1, and above the cone z = —/x2 + y2. Convert the triple integral /// z dV into spherical coordinates. Do
R

not compute the integral!
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d¢ dp do.

Note: The order of integration is already determined.
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Question 5. Let D be the rectangle {(#,v)] —1<u <land0<v <1},

Let x(u, v) = 2u? — 202 and y(u, v) = —2uv. Consider the transformation T (u, v) = (x(u, v), y(u, v)) = (2u? — 202, -2uv).

The transformation T satisfies:
T(u,0) = (2u?,0)
T(u,1) = Qu® -2,-2u)
T(-1,v) = (2 -20%,20)
T(1,v) = (2 - 202, —20)

(a) (2 points) Mark the picture which depicts the image T(D).
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(b) (2 points) Compute the Jacobian ox, ]/).
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(c) (3 points) Set up an iterated integral computing the area of T(D). Do not compute the integral!
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Question 6. Let T be the surface parametrized by

r(u,v) = ((3+cosu)cosv,sinu, (3+ cosu)sinv), foru,vin[0,27].

The surface T can be obtained by revolving the circle (x — 3)? + y? = 1 around the y-axis.
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(a) (4 points) Find the equation for the tangent plane to T at the point
P= ( V2 ‘/75) = r (37 /4).
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Tangent plane -2 =—1

(b) (2 points) Which of the following statements is true? You do not need to use the parameterization to calculate the
integrals.

Jlox2ds > [[ y*ds Jx2ds = [Jy?ds //Tx2d5<//Ty2dS
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Question 7. (3 points) Let S be the part of the cylinder (x — 1)? + z2 = 1 between the planes y = 1 and the plane
Y + z = 4. Parameterize S with a function r(u, v). Be sure to specify the domain D of your parameterization.

Xl = oS ¢ polas; (
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r(u,v)= < /[+ C@Q/UL ’ % ’ g\cfl/l/f. >

D = {(u, V)

Scratch Space



