Question 1.
Let R be the depicted region above the line x — ¥ + 1 = 0 and inside unit circle centered at the origin.
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(@) (4 points) Find the bounds of integration for ffR 2y dA as an iterated

integral
0 it

//Zy dA = 2y dy dx.
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Note: The order of integration is already determined.

(b) (2 points) Evaluate the integral /ﬁ{ 2y dA as set up in part (a).
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Question 2. (6 points)
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Consider the triple integral

0
tion is depicted; it is bounded b
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f(x,y,z) dx dy dz. Its region of integra-
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y the xy-plane, the yz-plane, and the planes with
equationsx —y —1=0and 2y + z = 0.

Determine the limits of integration when changing the order of integration as

2 -z/2 1+y
/ / f(x,y,z)dx dy dz
0 Ja 0

{

0

,2%

U

0

S

f(x,y,z)dz dy dx.
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e 1+sin(6)
Question 3. The double integral // x?y dA has the form / / ?? dr dO when converted into polar coordinates.
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(a) (2 points) Mark the box of the picture below which depicts the region R in the xy-plane.
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(b) (3 points) Fill in the missing integrand to convert this integral to polar coordinates. Do not compute the integral!
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Question 4. (7 points) Let R be the region in R? that is inside the sphere x2 + y? + z2 = 4 and below the cone z = /x2 + 2.
Convert the triple integral /[/ y dV into spherical coordinates. Do not compute the integral!
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Note: The order of integration is already determined.
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Question 5. Let D be the square {(#,v)] —3<u <0and0< v < 3}.
Let x(u,v) = v? — u? and y(u, v) = uv. Consider the transformation T(u, v) = (x(u, v), y(u,v)) = (0> — u?, uv).

The transformation T satisfies:
T(u,0) = (-u?,0)
T(u,3) = (9 — u?,3u)
T(0,v) = (v%,0)

T(-3,v) = (v® -9, -30)

(a) (2 points) Mark the picture which depicts the image T(D).
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(b) (2 points) Compute the Jacobian
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(c) (3 points) Set up an iterated integral computing the area of T(D). Do not compute the integral!
Area(T(D)) = D, Ly du dv

O -3




Question 6. Let T be the surface parametrized by
r(u,v) = ((2+ cosu)cosv, (2 +cosu)sinv,sinu), foru,vin[0,27].

The surface T can be obtained by revolving the circle (x — 2)> + z = 1 around the z-axis.

(a) (4 points) Find the equation for the tangent plane to T at the point
p= (%3 g,o) =1 (0,7/6).
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(b) (2 points) Which of the following statements is true? You do not need use the parameterization to calculate the
integral.
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Question 7.

(3 points) A surface of revolution is obtained by rotating the curve y = 3 + cos x around the x-axis. Let S be

the portion of that surface that lies between the planes x = /4 and x = 4m.
Parameterize S with a function r(u, v). Be sure to specify the domain D of your parameterization.
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