Question 1.

Let *R* be the depicted region above the line x - y + 1 = 0 and inside unit circle centered at the origin.

(a) **(4 points)** Find the bounds of integration for $\iint_R 2y \ dA$ as an iterated integral

$$\iint_{R} 2y \ dA = \int \frac{\int \sqrt{1-x^2}}{-||} 2y \ dy \ dx.$$

Note: The order of integration is already determined.

(b) (2 points) Evaluate the integral $\iint_{\mathbb{R}} 2y \ dA$ as set up in part (a).

$$\iint_{R} 2y dA = \int_{-1}^{0} \int_{x+1}^{1-x^{2}} 2y dy dx = \int_{-1}^{0} 4x^{2} dx = \int_{-1}^{0} (1-x^{2}) - (x+1)^{2} dx = \int_{-1}^{0} -2x^{2} - 2x dx = \int_{-1}^{0} -2x^{2} -2x dx = \int_{-1}^{0} -2x dx = \int_{-1}^{0}$$

Question 2. (6 points)

Consider the triple integral $\int_0^2 \int_{-1}^{-z/2} \int_0^{1+y} f(x,y,z) \, dx \, dy \, dz$. Its region of integration is depicted; it is bounded by the xy-plane, the yz-plane, and the planes with equations x - y - 1 = 0 and 2y + z = 0.

Determine the limits of integration when changing the order of integration as

Scratch Space

Question 3. The double integral $\iint_R x^2 y \ dA$ has the form $\int_0^{\pi} \int_0^{1+\sin(\theta)} ?? \ dr \ d\theta$ when converted into polar coordinates.

(a) **(2 points)** Mark the box of the picture below which depicts the region *R* in the *xy*-plane.

(b) (3 points) Fill in the missing integrand to convert this integral to polar coordinates. Do not compute the integral!

$$\iint_{R} x^{2}y \, dA = \int_{0}^{\pi} \int_{0}^{1+\sin\theta} \sqrt{\frac{4}{5}} \int_{0}^{2} \left(\int_{0}^{2} \int_{0}^{$$

$$x^2ydA = r^2\cos^2\theta r \sin\theta r drd\theta$$

Question 4. (7 points) Let R be the region in \mathbb{R}^3 that is inside the sphere $x^2 + y^2 + z^2 = 4$ and below the cone $z = \sqrt{x^2 + y^2}$. Convert the triple integral $\iiint_R y \ dV$ into spherical coordinates. Do **not** compute the integral!

$$y dV = \rho \sin \phi \sin \theta \cdot \rho^2 \sin \phi d\rho d\Phi d\theta$$

$$\iiint_{R} y \, dV = \int \frac{2\pi}{\sqrt{2\pi}} \int \frac{\pi}{\sqrt{2\pi}} \int \frac{2}{\sqrt{2\pi}} \int \frac{2}{\sqrt{2\pi}} \int \frac{2\pi}{\sqrt{2\pi}} \int \frac{2\pi}$$

Note: The order of integration is already determined.

Question 5. Let D be the square $\{(u, v) | -3 \le u \le 0 \text{ and } 0 \le v \le 3\}$.

Let $x(u,v) = v^2 - u^2$ and y(u,v) = uv. Consider the transformation $T(u,v) = (x(u,v),y(u,v)) = (v^2 - u^2,uv)$. The transformation T satisfies:

$$T(u,0) = (-u^2,0)$$

$$T(u,3) = (9 - u^2, 3u)$$

$$T(0, v) = (v^2, 0)$$

$$T(-3, v) = (v^2 - 9, -3v)$$

(a) **(2 points)** Mark the picture which depicts the image T(D).

(b) **(2 points)** Compute the Jacobian $\frac{\partial(x,y)}{\partial(u,v)}$.

$$\frac{\partial(x,y)}{\partial(u,v)} = \begin{vmatrix} -2u & v \\ 2s & u \end{vmatrix} = -2u^2 - 2s^2$$

$$\frac{\partial(x,y)}{\partial(u,v)} = -2u^2 - 2v^2$$

(c) (3 points) Set up an iterated integral computing the area of T(D). Do not compute the integral!

$$Area(T(D)) = \int_{0}^{3} \int_{-3}^{0} \left(2u^{2} + 2v^{2} \right) du dv$$

Question 6. Let *T* be the surface parametrized by

$$\mathbf{r}(u, v) = ((2 + \cos u)\cos v, (2 + \cos u)\sin v, \sin u), \text{ for } u, v \text{ in } [0, 2\pi].$$

The surface *T* can be obtained by revolving the circle $(x-2)^2 + z^2 = 1$ around the *z*-axis.

(a) **(4 points)** Find the equation for the tangent plane to *T* at the point $P = \left(\frac{3\sqrt{3}}{2}, \frac{3}{2}, 0\right) = \mathbf{r}(0, \pi/6).$

A normal vector is given by
$$\overline{C}_{u}(0, \frac{\pi}{6}) \times \overline{C}_{v}(0, \frac{\pi}{6})$$

$$\overline{C}_{u} = \left\langle -\sin u \cos v, -\sin u \sin v, \cos u \right\rangle$$

$$\longrightarrow \overline{C}_{u}(0, \frac{\pi}{6}) = \left\langle 0, 0, 1 \right\rangle$$

$$\widetilde{\Gamma}_{\nu} = \left\langle -(2+\cos u)\sin \theta, (2+\cos u)\cos \theta, 0 \right\rangle$$

$$\sim \widetilde{\Gamma}_{\nu}\left(0, \frac{R}{6}\right) = \left\langle -\frac{3}{2}, \frac{3\sqrt{3}}{2}, 0 \right\rangle$$

Plane equation:
$$\vec{N} \cdot (x-x_0, y-y_0, z-z_0) = 0$$

$$-\frac{3}{2} < 3, \sqrt{3}, 0 > < \alpha - \frac{3\sqrt{3}}{2}, y - \frac{3}{2}, z > = 0$$

or
$$\sqrt{3} \times + \sqrt{3} = 6$$
 Tangent plane $\sqrt{3} \times + \sqrt{3} = 6$

$$\sqrt{3} x + y = 6$$

(b) (2 points) Which of the following statements is true? You do not need use the parameterization to calculate the integral.

$$\iint_{T} y \, dS > \iint_{T} z \, dS \qquad \qquad \iint_{T} y \, dS < \iint_{T} z \, dS \qquad \qquad \iint_{T} y \, dS =$$

Question 7. (3 points) A surface of revolution is obtained by rotating the curve $y = 3 + \cos x$ around the *x*-axis. Let *S* be the portion of that surface that lies between the planes $x = \pi/4$ and $x = 4\pi$.

Parameterize S with a function $\mathbf{r}(u,v)$. Be sure to specify the domain D of your parameterization.

$$\mathbf{r}(u,v) = \left\{ \begin{array}{c} (u,v) = \left\{ (u,v) \mid \frac{\pi}{c_{+}} \leq u \leq \pi \end{array}, \left(\begin{array}{c} (2+\cos u) \cos v , \left(3+\cos u \right) \sin v \right\} \\ 0 \leq v \leq 2\pi \end{array} \right\}$$