Question 1 (4 points) Consider the following vectors in the xy-plane. The vectors \mathbf{a} , \mathbf{b} are unit vectors and $|\mathbf{c}| = 2$.

(a) Which vector represents $2\mathbf{b} - \mathbf{a}$? Mark your answer.

(b) Which vector represents the projection of **c** onto the vector **b**? Mark your answer.

r	t	2s	0	u	2u	$\frac{1}{2}\mathbf{v}$	$\frac{1}{2}\mathbf{w}$

Question 2

(2 points) Consider the function g(x, y) whose graph is shown at right. Let A and B be the depicted points in the (x, y)-plane. Mark the answer that is most consistent with the picture.

At the point A, the function g is:

Question 3 (4 points) Consider the function f(x, y) defined by

$$f(x,y) = \begin{cases} \frac{2xy}{x^2 + y^2} & (x,y) \neq (0,0) \\ 1 & (x,y) = (0,0). \end{cases}$$

Is f continuous at (0,0)? Choose the best answer.

f(x, y) is continuous at (0, 0).

f(x, y) is **not** continuous at (0, 0).

Select the reason which best supports your claim.

- The limit $\lim_{(x,y)\to(0,0)} \frac{2xy}{x^2+y^2} = 1$, which can be seen for example by checking on the line y = x.
- The limit $\lim_{(x,y)\to(0,0)} \frac{2xy}{x^2+y^2} = 1$, which can be seen by converting to polar coordinates.
- The limit $\lim_{(x,y)\to(0,0)} \frac{2xy}{x^2+y^2}$ does not exist because the limits along the lines x=0 and y=0 are different.
- The limit $\lim_{(x,y)\to(0,0)} \frac{2xy}{x^2+y^2}$ does not exist because the limits along the curves $y=x^2$ and y=0 are different.
- The limit $\lim_{(x,y)\to(0,0)} \frac{2xy}{x^2+y^2}$ does not exist because the limits along the lines y=x and y=0 are different.

Scratch Space
$$\frac{0}{x^{2}} = 0$$

$$(x,0) \rightarrow (0,0)$$

$$\frac{2x \cdot x}{x^{2}x^{2}} = \lim_{x \to 0} \frac{2x^{2}}{2x^{2}} = 1$$

$$(x,x) \rightarrow (0,0)$$

Question 4 (12 points)

The contour plot of a differentiable function f is shown below. Additionally, a curve C from (-3,2) to (-1,-2) is drawn below. For each part, circle the best answer.

2

(a) Estimate $\int_{1}^{4} \int_{2}^{4} f(x, y) dx dy$:

(b) Estimate $\int_C f ds$:

(c) Evaluate $\int_C \nabla f \cdot d\mathbf{r} = f(-1,-2) - f(-3,2) = -2 - 4 = -6$

(d) Evaluate $\int_C \operatorname{curl}(\nabla f) \cdot d\mathbf{r}$:

(e) Estimate $\nabla f(A)$:

(f) The point *Q* is: a local minimum a local maximum a saddle point not a critical point

(a) $\int_{2}^{4} f(x,y) dx dy \approx (4+4+2+2+(-1)+(-1)) = 10$

(b) \ \ \nabla F = length(C) Average (f) \(\tau \left[2\sqrt2 \cdot 3 + 2 \cdot (-1) \right] \(\tau \) 3.3 - 2 = 7

Question 5 (4 points) The function f(x, y) describes the temperature (°C) in a given region R in the plane, so that f(x, y) is the temperature at position (x, y). A few values of f together with its rates of change are given in the following table. Assuming that f is differentiable, use this data and linear approximation to estimate the temperature at (1.2, 2.4).

(x,y)	f(x,y)	$f_x(x,y)$	$f_y(x,y)$	$f_{xx}(x,y)$	$f_{yy}(x,y)$	$f_{xy}(x,y)$
(1, 2)	(-3)	4	1	4	9	11
(0.2, 0.4)	-7	-3	-6	1	-2	-4

$$f(1.2,24) \approx f(1,2) + f_{x}(1.2) (1.2-1) + f_{y}(1.2) (2.4-2)$$

$$= -3 + (4) (0.2) + (1) (0.4)$$

$$= -3 + 0.8 + 0.4 = -1.8$$

$$f(1.2,2.4) \approx \boxed{- | .8}$$

Question 6 (4 points)

Label each integral with its corresponding region of integration. Write your answer in the box next to the integral.

Question 7 (5 points)

Consider the differentiable function f(x, y). The table lists values of partial derivatives of f at several points. For each of the listed points below determine whether it is a local minimum, local maximum, saddle point, or none of these. Mark your answer below.

(x,y)	$f_x(x,y)$	$f_y(x,y)$	$f_{xx}(x,y)$	$f_{yy}(x,y)$	$f_{xy}(x,y)$
(0,0)	-3	0	0	0	0
(-1,0)	0	0	-6	-6	0
(0,1)	0	0	0	0	6

(0,0) is: ont a critical point	a local minimum	a local maximum	a saddle point
(-1,0) is: Onot a critical point	a local minimum	a local maximum	a saddle point
(0,1) is: Onot a critical point	a local minimum	a local maximum	a saddle point

Question 8 (2 points)

A conservative force field **F** is shown on the right. For scale, $\mathbf{F}(0,0) = \langle 0.2, 0 \rangle$. Estimate the work done by **F** to move a particle from (1,0) to (-1,0) along the indicated path.

FTLI \Rightarrow can compute line integral along C $\approx (-0.2)(2)=0.4$

$$D(-1,0) = f_{xx}(-1,0) f_{yy}(-1,0) - f_{xy}(-1,0)^2 = (-6)(-6) - 0 = 36 > 0; f_{xx} < 0$$

$$D(0,1) = f_{xx}(0,1) f_{yy}(0,1) - f_{xy}(0,1)^2 = 0 - 6^2 = -36 < 0$$

Question 9 (4 points)

Let *B* be the parallelogram bounded by the lines y = -3x, y = -3x + 7, x = 2y, and x = 2y - 7, and let *R* be the rectangle in the (u, v)-plane with vertices (0, 0), (2, 0), (0, 3), and (3, 2). Find a linear transformation *T* that takes the rectangle *R* to the parallelogram *B*.

$$T(u,v) = \left\langle U - \frac{\sqrt{3}}{3} \right\rangle$$

Question 10 (4 points) Let *C* be the curve parameterized by $\mathbf{r}(t) = t^2\mathbf{i} + t^3\mathbf{j} + (t+1)\mathbf{k}$. Find a vector equation for the tangent line to *C* at (1, -1, 0).

$$(1,-1,0)$$
 corresponds to $t=-1$
 $\vec{\Gamma}'(t_1)=\langle 2t_1,3t_2^2,1\rangle$ $\longrightarrow \vec{\Gamma}'(-1)=\langle -2,3,1\rangle$ line

Tangent line:
$$\left(1-2t, -1+3t, t \right)$$

Question 11 (2 points)

Consider the four electric charges placed as follows.

Charge Q_1 with value 3 is placed at (0, -5, 0),

Charge Q_2 with value 5 is placed at (3, 0, 0),

Charge Q_3 with value 1 is placed at (0, 0, 0), and

Charge Q_4 with value -4 is placed at (0, 0, -1).

Let E be the resulting electric field. The flux of E across the sphere $x^2 + y^2 + z^2 = 36$ is equal to $\frac{5}{\epsilon_0}$.

Let *S* be the region $\frac{x^2}{4} + y^2 + \frac{z^2}{9} \le 1$. Determine the flux of **E** across ∂S . Mark your answer.

Scratch Space

Which changes are inside of 5?

$$Q_1 \leftarrow \text{not in } S$$
, $\frac{x^2}{4} + y^2 + \frac{2^2}{q} = 0 + (-S)^2 + 0 = 25 > 1$
 $Q_2 \leftarrow \text{not in } S$, $\frac{x^2}{4} + y^2 + \frac{2^2}{q} = \frac{q}{4} + 0 + 0 = \frac{q}{4} > 1$
 $Q_3 \leftarrow \text{in } S$
 $Q_4 \leftarrow \text{in } S$

Gauss's Law
$$\Rightarrow$$
 flux across $\frac{\partial S}{\partial S}$ is $\frac{\partial S}{\partial S} + \frac{\partial W}{\partial S} = \frac{1-4}{60} = \frac{-3}{60}$

Question 12 (4 points) Assume $F(x, y) = \langle P(x, y), Q(x, y) \rangle$ is a vector field defined on the shaded region D depicted in the diagram, and assume that P and Q have continuous first partial derivatives on D. The region D is defined as

$$D = \left\{ (x, y) | x^2 + \left(\frac{5y}{4} - \sqrt{|x|} \right)^2 < 1 \text{ and } \left(x - \frac{1}{2} \right)^2 + \left(y - \frac{3}{4} \right)^2 > \frac{1}{20} \right\}$$

(a) **(2 points)** Which of the following statements about *D* is correct? (Mark all that apply.)

D is open

D is connected

D is simply connected

D is bounded

(b) **(2 points)** Assume $\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$. Which of the following statements about **F** on the region *D* are correct? (Mark exactly one option.)

F must be conservative

F cannot be conservative

F may or may not be conservative

Question 13 (4 points)

Let *V* be the solid lying above the plane z = -1, below the surface $z = x^2 + y^2$, and inside the cylinder $x^2 + y^2 = 4$. In cylindrical coordinates, the mass of *V* is computed by an integral of the form

$$\int_f^e \int_d^c \int_b^a g(r,\theta,z) \, d? \, d? \, d?$$

- (a) Mark the integral below with the correct bounds of integration. Pay attention to the given orders of integration.
- $\bigcap_{n=0}^{2\pi} \int_{1}^{4} \int_{-\pi}^{2} g(r,\theta,z) dr dz d\theta$
- $\bigcap_{0}^{2\pi} \int_{\sqrt{z}}^{2} \int_{-1}^{4} g(r,\theta,z) dr dz d\theta$
- $\bigcap_{0}^{2\pi} \int_{-1}^{4} \int_{2}^{\sqrt{z}} g(r,\theta,z) dr dz d\theta$
- $\bigcap_{0}^{2\pi} \int_{0}^{2} \int_{0}^{1} g(r,\theta,z) dr dz d\theta$

- $\int_{0}^{2\pi} \int_{0}^{2} \int_{-1}^{r^{2}} g(r, \theta, z) dz dr d\theta$
- $\int_0^{2\pi} \int_{\sqrt{z}}^2 \int_{-1}^4 g(r,\theta,z) \, dz \, dr \, d\theta$
- $\int_0^{2\pi} \int_0^4 \int_{-1}^{r^2} g(r,\theta,z) \, dz \, dr \, d\theta$
- $\int_0^{2\pi} \int_{\sqrt{z}}^2 \int_{-1}^{r^2} g(r,\theta,z) \, dz \, dr \, d\theta$
- (b) Mark the integral with correct integrand if the mass density is $\rho(x, y, z) = 2zx$.
- $\int_{f}^{e} \int_{d}^{c} \int_{h}^{a^{2}} 2zr \cos \theta \ d\theta \ dr \ dz$
- $\oint_{f}^{e} \int_{d}^{c} \int_{h}^{a} 2zr^{2} \cos \theta \ d\theta \ dr \ dz$
- $\int_{f}^{e} \int_{d}^{c} \int_{b}^{a} 2zr^{3} \cos \theta \sin \theta \ d\theta \ dr \ dz$

- $\int_{f}^{e} \int_{d}^{c} \int_{h}^{a} 2r^{2} \cos \theta \sin \theta \ d\theta \ dr \ dz$
- $\int_{f}^{e} \int_{d}^{c} \int_{b}^{a} 2r^{3} \cos \theta \sin \theta \ d\theta \ dr \ dz$
- $\int_{f}^{e} \int_{d}^{c} \int_{b}^{a} 2zr^{3} \cos \theta \sin \theta \ d\theta \ dr \ dz$

Scratch Space

0(1,0,2)=221050 dV=rdrd0dz

Question 14 (9 points) Let $F = \langle xy + z, z^2, 3x + yz \rangle$.

(a) Compute curl(F). Mark your answer.

 $\langle 0, 0, 0 \rangle$ $\langle z, 2, x \rangle$ $\langle z, -2, x \rangle$

 $\langle 0, 2, -x \rangle$

(b) Compute div(**F**).

$$-2y$$

-x-z-1 1-x-z 0 x+y+z xy+yz

(c) Let *C* be the curve $x^2 + z^2 = 1$ oriented counterclockwise in the *xz*-plane. Use Stokes's Theorem to compute $\int_C \mathbf{F} \cdot d\mathbf{r}$.

Stokes: ScF-dr= ScurlF. (0,1,0> ds

=
$$\iint \langle -2, -2, -x \rangle \cdot \langle 0, 1, 0 \rangle dS$$

= $-2 (area(D)) =$

$$\int_C \mathbf{F} \cdot d\mathbf{r} = -2\pi$$

Curl
$$\overrightarrow{P} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ \partial x & \partial y & \partial z \end{vmatrix} = \langle \overline{z} - 2\overline{z}, -(3-1), 0-x \rangle$$

$$xytz z^{2} 3x + yz = \langle -2, -2, -x \rangle$$

Question 15 (8 points)

Let S and D be the depicted surfaces, oriented outwards; their unit normals are also pictured. The boundary of *S* is the unit circle in the *xy*-plane and *D* has no boundary.

positive zero negative

S

Scratch Space

div F= 1+1+1=3, D is boundary of solid region B divergence theorem => NF.13= M divFdV= M31V=3. Volume(B)

(c) Note: 25 has opposite orientation as C.

Stokes
$$\Rightarrow$$
 $\int_{C} \vec{F} \cdot d\vec{r} = -\int_{C} \vec{F} \cdot d\vec{r} = -\int_{C} \cot(\vec{F} \cdot d\vec{s}) = -\int_{C} (0, -1, -1) \cdot (0, 0, -1) dS$

Unit disk

oriented

downwards

(d)
$$\text{div}\,\vec{G}=0$$
; divergence theorem $\Rightarrow \iint \vec{G} \cdot d\vec{S} = \iint \vec{G} \cdot d\vec{S$

Question 16 (8 points)

Consider the surface *S* parameterized by $\mathbf{r}(u,v) = \langle u, u^2 + v, v \rangle$ with domain $D = \{0 \le u \le 1, 0 \le v \le 1\}$.

(a) Mark the picture below which corresponds to *S*.

SIFuxTil dudy

(b) Which one of the following integrals computes the surface area of *S*?

$$\int_0^1 \int_0^1 \sqrt{2} \, du \, dv$$

$$\int_0^1 \int_0^1 \sqrt{4u^2 + 2} \, du \, dv$$

$$\int_0^1 \int_0^1 2u \, du \, dv$$

$$\int_{0}^{1} \int_{0}^{1} \sqrt{4u^{2} + 1} \, du \, dv$$

$$\int_0^1 \int_0^1 \sqrt{u^2 + u^4 + 2uv + 2v^2} \, du \, dv$$

(c) Orient S in the direction of the positive y-axis, that is, with a unit normal vector \mathbf{n} whose second component is positive. Which one of the following integrals computes the flux of $\mathbf{F} = \langle x, 3, z^2 \rangle$ across S? Mark the correct answer.

$$\int_0^1 \int_0^1 -3 \, du \, dv$$

$$\int_0^1 \int_0^1 3 - 2u^2 - v^2 \, du \, dv$$

$$\int_0^1 \int_0^1 2u^2 + v^2 - 3 \, du \, dv$$

$$\int_{\partial S} \langle x, 3, z^2 \rangle \cdot d\mathbf{r}$$

$$\int_{\partial S} \langle x, 3, z^2 \rangle \cdot d\mathbf{r} - \int_{\partial S} \langle x, 3, z^2 \rangle \cdot d\mathbf{r} - \int_{\partial S} \langle x, 3, z^2 \rangle \cdot d\mathbf{r}$$

$$\int_0^1 \int_0^1 3 \, du \, dv$$

$$-\int_{\partial S}\langle x,3,z^2\rangle \cdot d\mathbf{r}$$

F dS? Mark your answer.
$$\frac{1}{3}$$

- $\int_{0}^{1} \int_{0}^{1} 3 \, du \, dv$ $\int_{\partial S} \langle x, 3, z^{2} \rangle \cdot d\mathbf{r} = \int_{0}^{1} \int_{0}^{1} \langle x, 3, v^{2} \rangle \cdot \langle -2u, 1, -1 \rangle \, du dv$ (d) For the vector field $\mathbf{F} = \langle x, 3, z^{2} \rangle$ from part (c), what is the sign of $\iint_{S} \operatorname{div} \mathbf{F} \, dS$? Mark your answer.
 - $\iint_{S} \operatorname{div} \mathbf{F} dS$ is:

- negative

 $|\vec{r}_{u} \times \vec{r}_{v}|^{2} = |\vec{r}_{u} \times \vec{r}_{v}|^{2} = \sqrt{4u^{2}+2}$ points in negative y-direction