1. For the region *R* at right, evaluate $\iint_R 2x \, dA$. **(4 points)**

$$\iint_{R} 2x \, dA =$$

2. Consider the ellipse *C* given by $x^2 - xy + y^2 = 1$. Find all the points on *C* which are closest to the origin. **(6 points)**

Closest points:

(b)
$$\cos\left(\sqrt{x^2+y^2}\right)$$

(c) $e^x \cos y$

label its graph and its level set diagram from among the options below. Here each level set diagram consists of level sets $\{f(x,y)=c_i\}$ drawn for evenly spaced c_i . (9 points)

- **4.** Let x(s, t) be the function whose contour plot is shown at right.
 - (a) Estimate $\frac{\partial x}{\partial t}$ (2, 1) and circle the closest number below. **(2 points)**

$$\frac{\partial x}{\partial t}(2,1)$$
: -6 -4 -2 0 2 4 6

(b) Let g(x, y) be a function with the table of values and partial derivatives shown below and let y(s, t) = s + t. For G(s, t) = g(x(s, t), y(s, t)), compute $\frac{\partial G}{\partial t}(2, 1)$. **(4 points)**

(x,y)	g(x,y)	$\frac{\partial g}{\partial x}$	$\frac{\partial g}{\partial y}$
(0,3)	0	3	6
(0, 1)	2	-3	-1
(2, 1)	3	4	7
(3,3)	1	3	5

$$\frac{\partial G}{\partial t}(2,1) =$$

5. (a) For the curve *C* at right, directly compute $\int_C y \, dx + 3x \, dy$. (**5 points**)

$$\int_C y \, dx + 3x \, dy =$$

(b) Check your answer in (a) using Green's Theorem. (2 points)

6. Let E be the tetrahedron in \mathbb{R}^3 with vertices (0,0,0), (1,0,0), (0,1,0), and (0,0,2). Setup but do not evaluate a triple integral that computes the volume of E. **(5 points)**

7. (a) Let *R* be the region shown. Find a transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ taking $S = [0,1] \times [0,1]$ to *R*. (3 points)

$$T(u,v) = \left(\qquad , \qquad \right)$$

(b) Use your change of coordinates to evaluate $\iint_R x \, dA$ via an integral over S. **(5 points) Emergency backup transformation:** If you can't do (a), pretend you got the answer T(u, v) = (uv, v) and do part (b) anyway.

8.	Let <i>R</i> be the portion of the cylinder $x^2 + y^2 \le 1$ which lies in the octant where $\{x \ge 0, y \le 1\}$	$y \ge 0, z \ge 0$	and lies
	below the cone $z = 1 + \sqrt{x^2 + y^2}$. For the density $\rho = 6z$, compute the total mass of R.	(7 points)	

Mass =

9. Let
$$\mathbf{F}(x,y,z) = \left\langle \frac{x^3}{3}, \ x^2 \cos(z) + \frac{y^3}{3}, \ \frac{z^3}{3} \right\rangle$$
 and let S denote the surface defined by $x^2 + y^2 + z^2 = 1$, equipped with the inward-pointing unit normal vector field \mathbf{n} . Compute $\iint_S \mathbf{F} \cdot \mathbf{n} \ dA$ by any valid method. **(6 points)**

$$\iint_{S} \mathbf{F} \cdot \mathbf{n} \ dA =$$

10. Consider the surface *S* which is the portion of the plane z = x + y which lies inside the cylinder $x^2 + z^2 = 4$. Give a parameterization $\mathbf{r} \colon D \to S$ where *D* is a rectangle in plane with coordinates *u* and *v*. **(5 points)**

$$D = \left\{ \qquad \le u \le \qquad \text{and} \qquad \le v \le \qquad \right\}$$

$$\mathbf{r}(u,v) = \langle$$
 ,

11. Consider the portion *S* of the surface $z = 1 - x^2$ where $0 \le y \le 1$ and $z \ge 0$. Completely setup but do not evaluate $\iint_S x^2 dA$. (5 **points**)

- **12.** Let *S* be the surface in \mathbb{R}^3 parameterized by $\mathbf{r}(u, v) = \langle 2 2v^2, v \cos u, v \sin u \rangle$ for $0 \le u \le 2\pi$ and $0 \le v \le 1$.
 - (a) Mark the correct picture of *S* below. **(2 points)**

(b) For the vector field $\mathbf{F} = \langle 0, -z, y \rangle$, directly evaluate $\iint_S (\operatorname{curl} \mathbf{F}) \cdot \mathbf{n} \, dA$ where \mathbf{n} is unit normal vector field that points in the positive x-direction. **(5 points)**

$$\iint_{S} (\operatorname{curl} \mathbf{F}) \cdot \mathbf{n} \, dA =$$

(c) Check your answer in (b) using Stokes' Theorem. (3 points)

- **13.** Consider the function f(x, y) on the rectangle $D = \{0 \le x \le 3 \text{ and } 0 \le y \le 2\}$ whose contours are shown below right. For each part, circle the best answer. (1 point each)
 - (a) The maximum value of f on D is:

0 3 6 9 DNE

(b) At P, the derivative $\frac{\partial^2 f}{\partial^2 y}$ is:

negative zero positive

(c) The value of $D_{\mathbf{u}}f(P)$ is:

negative zero positive

(d) The number of critical points of *f* in *D* which are saddles is:

0 1 2 3

(e) The integral $\int_C f \, ds$ is: negative zero

(f) The integral $\int_C \nabla f \cdot d\mathbf{r}$ is: $\begin{bmatrix} -4 & -2 & 0 & 2 & 4 \end{bmatrix}$

(g) The integral $\iint_D f \ dA$ is:

-27 -18 -9 0 9 18 27

positive

(h) Mark the plot below of the gradient vector field ∇f .

- 14. Consider the vector field **F** on \mathbb{R}^2 shown below right. For each part, circle the best answer. (1 point each)
 - (a) The line integral $\int_C \mathbf{F} \cdot d\mathbf{r}$ is:

negative zero positive

(b) At A, the vector curl **F** is:

 $\langle 1, 0, 0 \rangle$ $\langle 0, 0, -1 \rangle$ $\langle 0, 0, 1 \rangle$

(c) At *B*, the divergence div **F** is:

negative zero positive

(d) If $\mathbf{F} = \langle P, Q \rangle$, then $\iint_R \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} dA$ is:

negative zero positive

(e) The vector field **F** is conservative:

True False

- 15. Consider the surfaces S and H show below right; the boundary of S is the unit circle in the xy-plane, and *H* has no boundary. For each part, circle the best answer.
 - (a) For $\mathbf{F} = \langle yz, xz + x, z \rangle$, the integral $\iint_H \mathbf{F} \cdot \mathbf{n} \ dA$ is: negative zero positive (1 point)
 - (b) The flux of $\operatorname{curl} \mathbf{F} = \langle -x, y, 1 \rangle$ through *H* is: negative zero positive (1 point)
 - (c) The integral $\iint_S (\operatorname{curl} \mathbf{F}) \cdot d\mathbf{S}$ is: -2π 0 (2 points) 2π
 - (d) For $\mathbf{G} = \langle y, z, 2 \rangle$, the integral $\iint_S \mathbf{G} \cdot \mathbf{n} \ dA$ is: -2π 0 2π (2 points) $-\pi$

