- **1.** Consider the three points A = (0,1,0), B = (1,1,1), and C = (0,2,1) in \mathbb{R}^3 . For each part, circle the best answer. (1 point each)
 - (a) The projection of the vector \overrightarrow{AC} onto \overrightarrow{AB} is: $\langle 0, 2, 2 \rangle \quad \left\langle \frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}} \right\rangle \quad \left\langle \frac{1}{2}, 0, \frac{1}{2} \right\rangle \quad \left\langle \frac{1}{2}, \frac{1}{2}, 0 \right\rangle$
 - (b) The area of the triangle formed by these three points is: $\sqrt{3}$ $\frac{\sqrt{3}}{2}$ 3 $\frac{3}{2}$
 - (c) $\overrightarrow{AB} \cdot (\overrightarrow{AB} \times \overrightarrow{AC}) = \begin{bmatrix} -3 & -2 & -1 & 0 & 1 & 2 & 3 \end{bmatrix}$
 - (d) For the vector $\mathbf{v} = \langle 0, 2, 2 \rangle$, the angle between \overrightarrow{AC} and \mathbf{v} is: $0 \quad \pi/4 \quad \pi/2 \quad \pi \quad 3\pi/2$
- **2.** Suppose $f: \mathbb{R}^2 \to \mathbb{R}$ has the table of values and partial derivatives shown at right. For x(r,s) = 2r s and $y(r,s) = -4r + s^2$, let $F(r,s) = f\left(x(r,s), y(r,s)\right)$ be their composition with f.

 Circle the value of $\frac{\partial F}{\partial r}(1,2)$:

 24 -24 40 -40 -11 11

(2 points)

(x, y)	f(x,y)	$\frac{\partial f}{\partial x}$	$\frac{\partial f}{\partial y}$	
(0,0)	3	4	8	
(1,2)	6	2	5	
(3,3)	19	-8	5	
(4,3)	7	3	2	

3. Exactly one of the limits at right exists.

Circle the limit **that exists:**

Justify your answer either by showing that the limit you circled exists and computing its value, or by showing that the other limit does not exist. **(4 points)**

(A)
$$\lim_{(x,y)\to(0,0)} \frac{\sin(\sqrt{x^2+y^2})}{\sqrt{x^2+y^2}}$$

(B)
$$\lim_{(x,y)\to(0,0)} \frac{x^2 + x}{\sqrt{x^2 + y^2}}$$

4. Consider the function f(x, y) = |x| + |y|, whose graph is shown at right. Circle the phrase that best completes each sentence. (1 point each)

- (a) At the point (1,1), the function f is continuous differentiable both continuous and differentiable
- (b) At the point (0,0), the function f is continuous differentiable both continuous and differentiable

5. Suppose that g(x, y, z) is a function and g(1,0,3) = 6 and $\nabla g(1,0,3) = 2\mathbf{i} + 3\mathbf{j} + 4\mathbf{k}$. Use linear approximation to estimate the value of g(1.2, -0.1, 2.9). **(2 points)**

 $g(1.2, -0.1, 2.9) \approx \begin{bmatrix} 5.5 & 5.7 & 5.8 & 5.9 & 6 & 6.1 & 6.2 & 6.3 & 6.4 & 6.5 \end{bmatrix}$

6. The level curves of the partial derivatives f_x (solid lines) and f_y (dashed lines) of a function f(x,y) are shown at right. There are **exactly two** critical points of f in the domain shown in the picture. Find both of them and classify each as a local minimum, local maximum, or saddle. **(4 points)**

(,) which is a

local min local max saddle

7.	Find the absolute r straint $x^2 + y^2 \le 4$.	naximum and minimum values (6 points)	of the function f	$f(x, y) = 2x^2 + y^2 + 5$ subject to the con-
			ſ	Absolute max value =
				Absolute min value =

- 8. The contour map of a differentiable function f is shown at right. For each part, circle the best answer. (2 points each)
 - (a) The directional derivative $D_{\mathbf{u}}f(P)$ is:

positive negative zero

(b) Estimate $\int_C f ds$:

$$-8.1$$
 -5.4 -2.7 0 2.7 5.4 8.1

(c) Estimate $\iint_R f dA$:

$$-4.8$$
 -3.2 -1.6 0 1.6 3.2 4.8

(d) The point *Q* is:

a local maximum a local minimum a saddle not a critical point

(e) Find $\int_C \nabla f \cdot d\mathbf{r}$: $-12 -9 -6 -3 \ 0 \ 3 \ 6 \ 9 \ 12$

9. Suppose that $\mathbf{r}:[0,2] \to \mathbb{R}^2$ is a parametric curve in the plane and that $\mathbf{r}(t)$ and $\mathbf{r}'(t)$ have the values given in the table at left. Check the box below the picture that could be a plot of $\mathbf{r}(t)$. **(2 points)**

t	$\mathbf{r}(t)$	$\mathbf{r}'(t)$
0	(0,0)	i
1	(1,1)	- i
2	(2,4)	i + 4j

10. For each of the integrals below, label the picture of the corresponding region of integration. (2 points each)

(A)
$$\int_{1}^{2} \int_{0}^{\pi/2} \int_{\pi/2}^{\pi} f(\rho, \phi, \theta) \rho^{2} \sin \phi \, d\theta \, d\phi \, d\rho$$

(B)
$$\int_{\pi/2}^{\pi} \int_{0}^{\pi/2} \int_{0}^{\phi} g(\rho, \phi, \theta) \rho^{2} \sin \phi \, d\rho \, d\phi \, d\theta$$

11. (a)	Consider the vector field $\mathbf{F} = \langle$	$v_z - v_z$	$\forall x \rangle \text{ on } \mathbb{R}^3$	Compute the curl of F	(2 points)
11. (a)	Consider the vector held $\mathbf{r} = 1$	$y \sim, -x \sim,$	$y \lambda / O \Pi \square $.	Compute the curr of r.	(2 points)

$$\operatorname{curl} \mathbf{F} = \left\langle \right\rangle$$

(b) Let *S* be the portion of the sphere $x^2 + y^2 + z^2 = 13$ where $x \le 3$. Find the flux of curl **F** through *S* with respect to the outward pointing unit normal vector field. **(6 points)**

(c) Let D be the portion of the sphere $x^2 + y^2 + z^2 = 13$ where $x \ge 3$. Find the flux of curl **F** through D with respect to the outward pointing unit normal vector field. flux = (1 **point**)

12. (a) Let *S* be the portion of the surface $z = -\sin(x)\sin(y)$ where $0 \le x \le \pi$ and $0 \le y \le \pi$ which is shown at right. Use a parameterization to find the flux of $\mathbf{F} = \langle 0, 0, 2z + 1 \rangle$ through *S* with respect to the downward normals. **(5 points)**

flux =

(b) Let E be the region below the xy-plane and above S. Use an integral theorem to compute the flux of F through ∂E with respect to the outward normals. (4 points)

flux =

(c) Your answers in (a) and (b) should differ. Explain what accounts for the difference. (1 point)

(b) Use the parameterization to find the tangent plane to *S* at $(1, \sqrt{2}, 1)$. (4 points)

Equation:	<i>x</i> +	<i>y</i> +	z =	
Equation:		<i>y</i> +	z =	

(c) The surface S has area $4\sqrt{2}\pi$. Find the average of f(x, y, z) = y on S. (4 points)

Average =

14. Here are plots of six vector fields on the box where $0 \le x \le 1$, $0 \le y \le 1$, and $0 \le z \le 1$. For each part, circle the best answer. (1 **point each**)

(a) The vector field given by $\langle z, 1, 0 \rangle$ is:

A B C D E F

(b) Exactly one of these vector fields has nonzero divergence. It is: A B C D E F

For this vector field, the divergence is generally: negative positive

(c) The vector field **A** is conservative:

true false

 $(d) \ \ Exactly one of the vector fields is constant, that is, independent of position. It is:$

A B C D E F

(e) The vector field curl **C** is constant. The value of curl **C** is:

 $\begin{vmatrix} \mathbf{i} & -\mathbf{i} & \mathbf{j} & -\mathbf{j} & \mathbf{k} & -\mathbf{k} & \mathbf{0} \end{vmatrix}$

(f) The vector field that is the gradient of a function f whose level sets are shown at right is: $\begin{bmatrix} \mathbf{A} & \mathbf{B} & \mathbf{C} & \mathbf{D} & \mathbf{E} & \mathbf{F} \end{bmatrix}$

15. Let *S* be the ellipsoid $\frac{x^2}{4} + y^2 + \frac{z^2}{9} = 1$ which is shown at right. Give a parameterization **r**: $D \to \mathbb{R}^3$ for *S*, being sure to specify the domain *D* of the parameterization in the (u, v)-plane. **(4 points)**

16. For each transformation $\mathbb{R}^2 \to \mathbb{R}^2$ below, circle "yes" or "no" depending on whether or not it takes the rectangle $0 \le u \le 1$, $0 \le v \le 2$ in the (u, v)-plane to the parallelogram in the (x, y)-plane with vertices (0,0),(4,2),(2,-2), and (6,0). (1 point each)

yes no
$$T(u, v) = (2u + 4v, -2u + 2v)$$

yes no
$$T(u, v) = (4u + v, 2u - v)$$

yes no
$$T(u, v) = (4u + 2v, 2u - 2v)$$

yes no
$$T(u, v) = (2u + 2v, -2u + v)$$

- **17.** Let $\mathbf{F} = \langle -x^3 \cos^3(x) + y^3, \ y^3 \sin^3(y) x^3 \rangle$ and let C be the unit circle in the plane \mathbb{R}^2 oriented counterclockwise. Determine whether the integral $\int_C \mathbf{F} \cdot d\mathbf{r}$ is: negative zero positive (2 **points**)
- **18.** Let *S* and *H* be the surfaces at right; the boundary of *S* is the unit circle in the *xy*-plane, and *H* has no boundary. Suppose there is a positive charge *Q* placed at the origin and let **E** be the resulting electrical field. For each part, circle the correct answer. **(2 points each)**

(a) The flux
$$\iint_H \mathbf{E} \cdot \mathbf{m} \, dS$$
 is: negative zero positive

- (b) The flux $\iint_S \mathbf{E} \cdot \mathbf{n} \ dS$ is: negative zero positive
- (c) For $\mathbf{G} = \langle xy^2, yz, x+z \rangle$, the flux $\iint_H (\operatorname{curl} \mathbf{G}) \cdot \mathbf{m} \, dS$ is:

