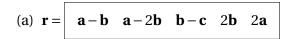
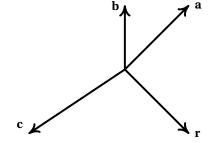
1. Circle the vector **n** that is normal to the plane containing the point P = (1, 2, 2) and the line L parameterized by x = 2, y = 1 + t, and z = 1 - t. (2 points)

 $\langle -2, 1, 1 \rangle$ $\langle 0, 1, -1 \rangle$ $\langle -2, 0, -1 \rangle$ $\langle -2, -1, -1 \rangle$

2. Consider the vectors **a**, **b**, **c** and **r** in the plane of this piece of paper. For each part, circle the best answer. (1 point each)



(b) $\operatorname{proj}_{\mathbf{b}}(\mathbf{a} + \mathbf{b}) = \boxed{\mathbf{a} + \mathbf{b} \quad \mathbf{a} \quad \mathbf{b} \quad 2\mathbf{b} \quad 2\mathbf{a}}$



- (c) $\mathbf{b} \cdot \mathbf{c} = \begin{vmatrix} \mathbf{c} & \mathbf{c} & \mathbf{c} \\ \mathbf{c} & \mathbf{c} \end{vmatrix}$ positive negative zero
- 3. Consider the function $f: \mathbb{R}^2 \to \mathbb{R}$ given by $f(x, y) = \begin{cases} \frac{xy + y^3}{x^2 + y^2} & (x, y) \neq (0, 0) \\ 0 & (x, y) = (0, 0) \end{cases}$ (2 points each)
 - (a) Check the box next to the only true statement below. The limit $\lim_{(x,y)\to(0,0)} f(x,y)$ does not exist because

the numerator and denominator are both zero at (0,0).

the limit as one approaches (0,0) along the lines y=0 and x=0 are different.

the limit as one approaches (0,0) along the paths $y = x^2$ and x = 0 are different.

the limit as one approaches (0,0) along the lines y = x and x = 0 are different.

(b) Compute $\frac{\partial f}{\partial x}(0,0)$ and $\frac{\partial f}{\partial y}(0,0)$; if a partial derivative does not exist, write "DNE".

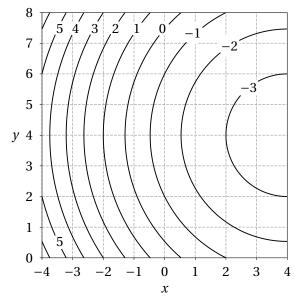
$$\frac{\partial f}{\partial x}(0,0) =$$

$$\frac{\partial f}{\partial y}(0,0) =$$

- **4.** The level curves of a differentiable function f(x, y) on $[-4, 4] \times [0, 8]$ are shown below.
 - (a) Circle the best estimate for $\int_{-4}^{-1} \int_{6}^{8} f(x, y) dy dx$.

$$-30$$
 -24 -18 -12 -6 0 6 12 18 24 30

(2 points)



(b) Find the points on the curve $x^2 + (y-4)^2 = 4$ where f attains its absolute maximum and minimum values.

Max value =

at the point(s)

(1 point)

Min value =

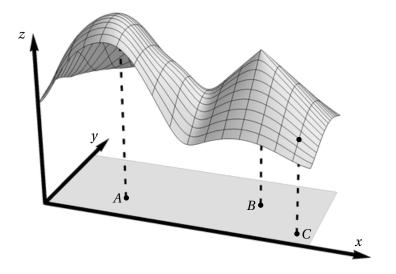
at the point(s)

(1 point)

(c) The absolute minimum value of f on the region $D = \{x^2 + (y-4)^2 \le 4\}$ is:

(1 point)

5. Consider the function $g: \mathbb{R}^2 \to \mathbb{R}$ whose graph is shown at right. Let A and B be the points in \mathbb{R}^2 corresponding to the two "peaks" of the graph, and C be the point in \mathbb{R}^2 corresponding to the dot on the graph. For each part, circle the answer that is most consistent with the picture. (1 point each)



(a) At the point A, the function g is:

continuous	differentiable	both	neither
continuous	differentiable	DOTT	Hertifer

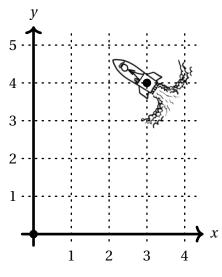
(b) At the point *B*, the function *g* is:

	11.00		
continuous	differentiable	both	neither

(c) At the point *C*, the function $\frac{\partial g}{\partial x}$ is:

negative zero positive

6. An exceptionally tiny spaceship positioned as shown is traveling so that its x-coordinate *decreases* at a rate of 1/3 m/s and y-coordinate *increases* at a rate of 1/2 m/s. Use the Chain Rule to calculate the rate at which the distance between the spaceship and the point (0,0) is increasing. **(5 points)**



Distances in meters

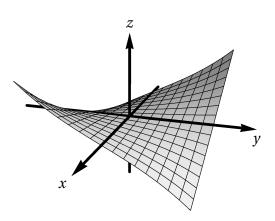
Rocket courtesy of xkcd.com

- 7. Let $f: \mathbb{R}^2 \to \mathbb{R}$ be the function whose graph is shown at right.
 - (a) Find the tangent plane to the graph at (0,0,0). (1 point)

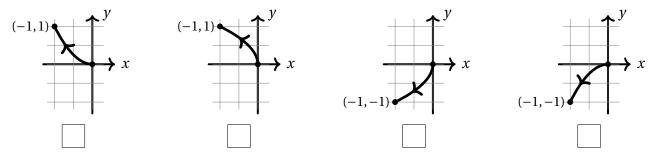
Equation: x+ y+ z=

(b) The partial derivative $\frac{\partial^2 f}{\partial x \partial y}(0,0)$ is (circle your answer):

negative zero positive (1 point)



- **8.** Let *C* be the curve in \mathbb{R}^2 parameterized by $\mathbf{r}(t) = \langle -t^2, t \rangle$ for $0 \le t \le 1$.
 - (a) Mark the picture of *C* from among the choices below. (1 point)



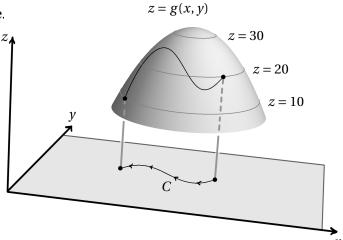
(b) For the vector field $\mathbf{F} = \langle y, -x \rangle$, compute $\int_C \mathbf{F} \cdot d\mathbf{r}$. (3 points)

$$\int_C \mathbf{F} \cdot d\mathbf{r} =$$

9. Let $g: \mathbb{R}^2 \to \mathbb{R}$ be the function whose graph is shown at right, and let C be the indicated curve in the xy-plane. Evaluate the line integral:

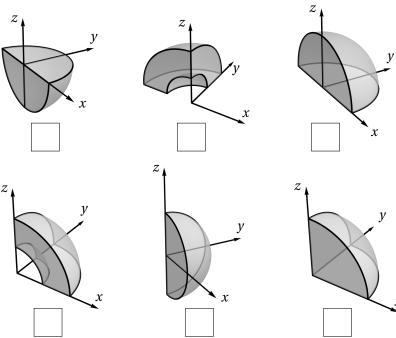
$$\int_{C} \nabla g \cdot d\mathbf{r} = \boxed{ (2 \text{ points})}$$

(2 points)



(A)
$$\int_0^{\pi/2} \int_0^{\pi/2} \int_1^2 \rho^2 \sin\phi \, d\rho \, d\phi \, d\theta$$

(B)
$$\int_0^{\pi} \int_{\pi/2}^{\pi} \int_0^2 \rho^2 \sin\phi \ d\rho \ d\phi \ d\theta$$

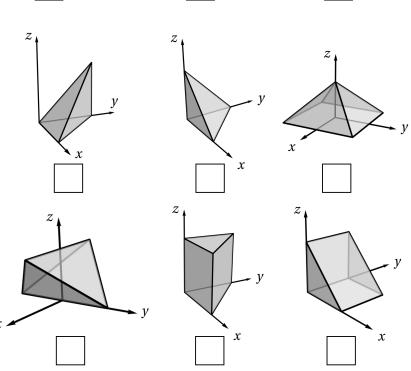


11. For each of the given integrals, label the box below the picture of the corresponding region of integration.

(2 points each)

(A)
$$\int_0^1 \int_0^{1-x} \int_0^1 f(x, y, z) \, dz \, dy \, dx$$

(B)
$$\int_{0}^{1} \int_{-1+z}^{1-z} \int_{-z}^{z} g(x, y, z) \, dx \, dy \, dz$$



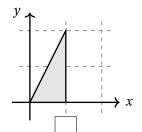
12. Let V be the solid lying below the plane z=1, above the surface $z=-\sqrt{x^2+y^2}$, and inside the cylinder $x^2+y^2=4$. Set up an integral computing the mass of V if the mass density is $\rho(x,y,z)=z+2$. (4 points)

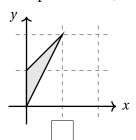
Be sure to fill in your variables of integration in the spaces after the d's.

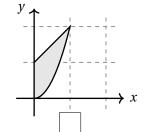
Mass of
$$V=\int \int \int$$

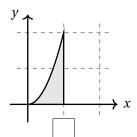
d d d

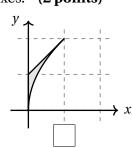
- **13.** Consider the transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ defined by T(u, v) = (uv, u + v). Let D be the triangle in the uv-plane whose vertices are (0,0),(1,0),(1,1). Let S be the region T(D) in the xy-plane.
 - (a) Mark the box below the picture of *S*; here the dotted grids are made of unit-sized boxes. **(2 points)**









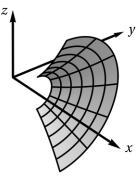


(b) Express $\iint_{S} y \, dA$ as an integral over D:

dvdu

(2 points)

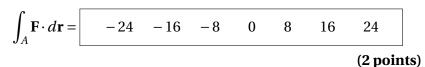
14. The curve $y = x^2$ in the xy-plane is revolved about the x-axis in \mathbb{R}^3 to produce a surface. Parameterize the **portion of this surface with** $y \ge 0$ **and** $1/2 \le x \le 1$ which is shown at right. Be sure to specify the domain D. (3 **points**)

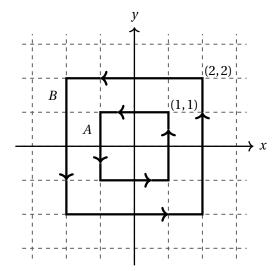


$$\mathbf{r}(u,v) = \left\langle \right.$$

$$D = \left\{ (u, v) \mid \leq u \leq , \leq v \leq \right\}$$

15. A vector field $\mathbf{F} = \langle P, Q \rangle$ is defined on the plane minus the origin and $\frac{\partial Q}{\partial x} = \frac{\partial P}{\partial y} + 2$ for all $(x, y) \neq (0, 0)$. Let A and B be the two *oriented* curves shown at the right drawn against a grid of unit squares, and suppose $\int_B \mathbf{F} \cdot d\mathbf{r} = 16$. Evaluate the integral:





16. The region *D* defined by $\{0.03 < x^2 + y^2 < 1.3\}$ is shown at right. The curves A, B, C are within this region. Each curve starts at (0,-1) and ends at (0,1). Suppose that $\mathbf{F}(x, y) = P(x, y)\mathbf{i} + Q(x, y)\mathbf{j}$ is a differentiable vector field defined on D with the properties

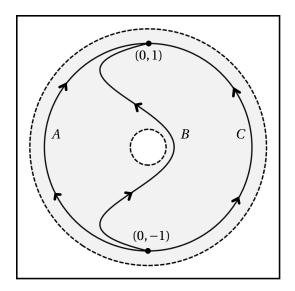
$$\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$$
, $\int_A \mathbf{F} \cdot d\mathbf{r} = 2$, and $\int_C \mathbf{F} \cdot d\mathbf{r} = -1$.

(a) The region *D* is simply connected. (1 point)

True False

(b) F is conservative. (1 point)

Cannot determine Yes No



(c) Find $\int_{R} \mathbf{F} \cdot d\mathbf{r}$. (1 point)

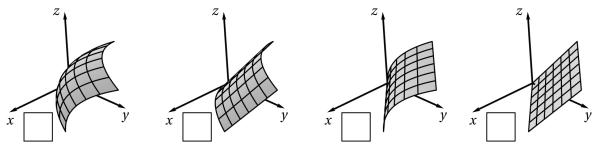
-3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3

17. For this problem, $G = \langle yz + 2x^2, 2xy, xy^2 \rangle$ and S is the boundary of the cube $0 \le x \le 1$, $0 \le y \le 1$, $0 \le z \le 1$ oriented with the outward pointing normal vectors **n**. Circle the best response for each of the following.

(a)
$$\iint_{S} \mathbf{G} \cdot \mathbf{n} \, dS = \begin{bmatrix} -5 & -3 & -1 & 0 & 1 & 3 & 5 \end{bmatrix}$$
 (2 points)
(b) $\iint_{S} (\text{curl } \mathbf{G}) \cdot \mathbf{n} \, dS$ is negative zero positive (1 point)

- (c) Suppose a charge Q is placed at $\mathbf{p} = \langle 1/2, 1/2, 1/2 \rangle$ and let $\mathbf{E} = \frac{Q}{4\pi\epsilon_0} \frac{1}{|\mathbf{r} \mathbf{p}|^3} (\mathbf{r} \mathbf{p})$ for $\mathbf{r} = \langle x, y, z \rangle$ be the resulting electric field. Then $\iint_{S} \mathbf{E} \cdot \mathbf{n} \ dS =$ (1 point)

- **18.** Consider the surface *S* parameterized by $\mathbf{r}(u, v) = \langle u, u^2 + v^2, v \rangle$ defined on $D = \{(u, v) \mid 0 \le u \le 1, 0 \le v \le 1\}$ and oriented by the normal vector \mathbf{n} with positive second component.
 - (a) Mark the box below the picture of *S*. **(2 points)**



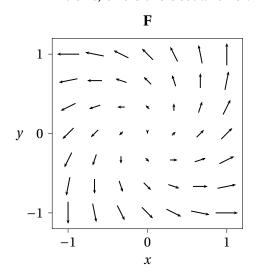
(b) Compute $\iint_S \langle z, 3, -x \rangle \cdot \mathbf{n} \, dS$. (4 points)

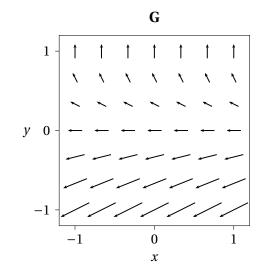
$$\iint_{S} \langle z, 3, -x \rangle \cdot \mathbf{n} \ dS =$$

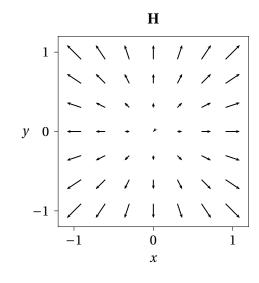
(c) Fill in the integrand so that the surface area of S is:

$$\int_0^1 \int_0^1 du dv$$
 (1 point)

19. Three vector fields are shown below, **exactly one** of which is conservative. For each of the following questions, circle the best answer.







(a) The conservative vector field is:

F G H (2 points)

(b) The vector field $\langle y - 1, y \rangle$ is:

F G H (1 point)

(c) The function $div \mathbf{H}$ is constant. The value of $div \mathbf{H}$ at any point is:

negative zero positive (1 point)

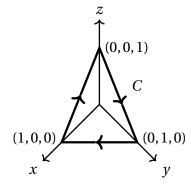
(d) The vector field $\operatorname{curl} {\bf F}$ is constant. The value of $\operatorname{curl} {\bf F}$ at any point is:

 $\langle 0, 0, -1 \rangle$ $\langle 0, 0, 0 \rangle$ $\langle 0, 0, 1 \rangle$ (1 point)

(e) Let *C* be the circle $\left(x - \frac{1}{2}\right)^2 + \left(y - \frac{1}{2}\right)^2 = \frac{1}{4}$, and **n** the outward pointing normal vector in the plane.

The 2D flux $\int_C \mathbf{H} \cdot \mathbf{n} \, ds$ is: negative zero positive (1 **point**)

- **20.** For this problem, $\mathbf{F} = \langle x^2 2y, \ y^2 2z, \ z^2 2x \rangle$ and C is the oriented closed curve made from three straight line segments shown at the right.
 - (a) Compute curl **F**. **(2 points)**



$$\operatorname{curl} \mathbf{F} = \left\langle \begin{array}{ccc} & & \\ & & \\ & & \end{array} \right\rangle$$

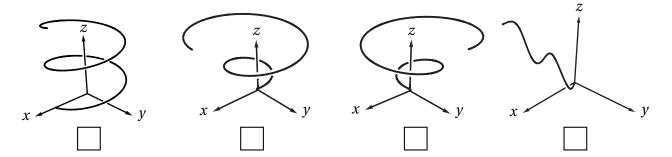
(b) Compute div F. (1 point)

(c) Compute $\int_C \mathbf{F} \cdot d\mathbf{r}$. (4 points)

$$\int_C \mathbf{F} \cdot d\mathbf{r} =$$

- (d) $\int_C \operatorname{div} \mathbf{F} \, ds$ is: negative zero positive (1 **point**)
- (e) Is **F** conservative? yes no (1 **point**)

21. Mark the picture of the curve in \mathbb{R}^3 parameterized by $\mathbf{r}(t) = \langle t \cos t, t \sin t, t \rangle$ for $0 \le t \le 4\pi$. (2 points)

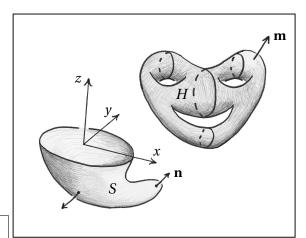


- **22.** Let *S* and *H* be the surfaces at right; the boundary of *S* is the unit circle in the *xy*-plane, and *H* has no boundary. **1 pt each**
 - (a) The integral $\iint_H x^2 y^2 + z^2 dS$ is:

negative zero positive

(b) The vector field $\mathbf{F} = \langle y + z, -x, yz \rangle$ has $\operatorname{curl} \mathbf{F} = \langle z, 1, -2 \rangle$. The flux $\iint_{S} (\operatorname{curl} \mathbf{F}) \cdot \mathbf{n} \, dS$ is:

$$-5\pi$$
 -4π -3π -2π $-\pi$ 0 π 2π 3π 4π 5π



- (c) For $\mathbf{G} = \langle x, y, z \rangle$, the flux $\iint_{S} \mathbf{G} \cdot \mathbf{n} \, dS$ is: negative zero
- (d) For $\mathbf{E} = \langle z, x, 2 \rangle$, the flux $\iint_S \mathbf{E} \cdot \mathbf{n} \, dS$ is: $\begin{bmatrix} -5\pi & -4\pi & -3\pi & -2\pi & -\pi & 0 & \pi & 2\pi & 3\pi & 4\pi & 5\pi \end{bmatrix}$

positive