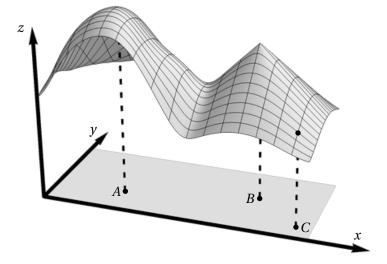
- **1.** Let A = (1,0,1), B = (1,2,0), and C = (2,3,1). For each part, circle the best answer. (1 point each)
 - (a) Let θ be the angle between \overrightarrow{BA} and \overrightarrow{BC} . The value of θ is:

$$\theta = 0$$
 $0 < \theta < \pi/2$ $\theta = \pi/2$ $\pi/2 < \theta < \pi$ $\theta = \pi$

- (b) The area of the triangle formed by these points is: $\frac{\sqrt{14}}{2}$ $\sqrt{14}$ 7 14
- (c) Let ℓ be the line through B and C. The distance from A to ℓ is:

$\sqrt{14}$	$\sqrt{14}$	$\sqrt{14}$	$\sqrt{14}$
2	$\sqrt{3}$	$\sqrt{5}$	$\overline{\sqrt{15}}$

2. Consider the function $g: \mathbb{R}^2 \to \mathbb{R}$ whose graph is shown at right. Let A and B be the points in \mathbb{R}^2 corresponding to the two "peaks" of the graph, and C be the point in \mathbb{R}^2 corresponding to the dot on the graph. For each part, circle the answer that is most consistent with the picture. (**1 point each**)



(a) At the point *A*, the function *g* is:

continuous	differentiable	both	neither

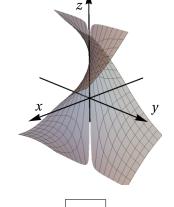
(b) At the point *B*, the function *g* is:

continuous	differentiable	both	neither
commuda	differentiable	DOUL	110101101

(c) At the point C, the function $\frac{\partial g}{\partial r}$ is:

negative zero positive

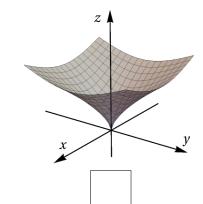
3. For each of the given functions, label the box below the picture corresponding to its graph. (1 point each)

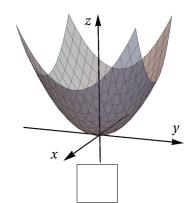


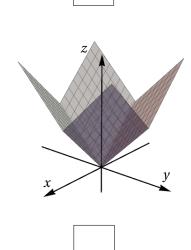
 $(A) \quad |x| + |y|$

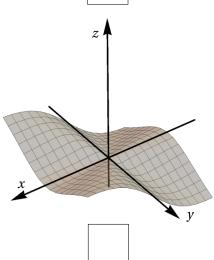
$$(B) \quad x^2 + y^2$$

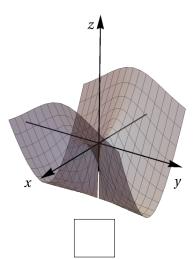
$$(C) \quad \frac{xy^2}{x^2 + y^2}$$







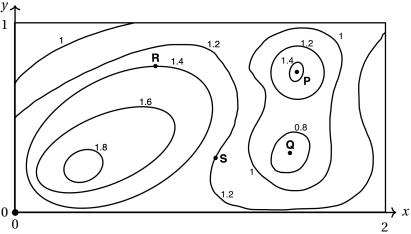




4. It is raining on a hill whose height is given by the function $h(x, y) = 20 - 2x^2 - 3y^2$. Assume that water always flows downhill, in the direction where the height of the hill decreases most quickly. At the point (1,1) what is the direction (in the xy-plane) in which the water will flow? **(2 points)**

At (1,1) the rain water flows in direction of

5. A rectangular garbage container with dimensions 2 meter high by 2 meter wide by 1 meter deep is partially filled with trash. The function f(x, y) describes the height (in meters) of the trash; a contour map of f is shown to the right. For each part below, circle the best answer.



(a) Classify the behavior at the given points. (1 point each)

At <i>P</i> :	f has a local min	f has a local max	f has a saddle point	P is not a critical point
At Q:	f has a local min	f has a local max	f has a saddle point	Q is not a critical point
At <i>R</i> :	f has a local min	f has a local max	f has a saddle point	R is not a critical point

- (b) $\nabla f(R) \approx \boxed{\langle 0, -3.5 \rangle \quad \langle 0, -1.2 \rangle \quad \langle 0, -0.2 \rangle \quad \langle 0, 0 \rangle \quad \langle 0, 0.2 \rangle \quad \langle 0, 1.2 \rangle \quad \langle 0, 3.5 \rangle}$ (1 point)
- (c) Let \mathbf{u} be a unit vector in the direction of \overrightarrow{RS} . The directional derivative $D_{\mathbf{u}}f(R)$ is: negative zero positive (2 points)
- (d) The volume of trash in the container (m^3) is $\approx \begin{vmatrix} 1.1 & 2.5 & 3.8 & 5.1 & 7.2 \end{vmatrix}$ (2 points)

6. The contour plot of a differentiable function f is shown below. For each part, circle the best answer.

(a) Estimate $\int_C f ds$: (2 points)

$$-9$$
 -5.5 -0.6 0 0.6 5.5 9

(b) Estimate $\int_C \nabla f \cdot d\mathbf{r}$:

(c) Find the points on the curve $x^2 + (y-2)^2 = 1$ where f has max/min values. (2 points)

```
Max value = at the point(s)

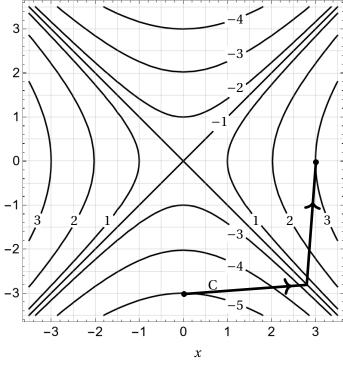
Min value = at the point(s)
```

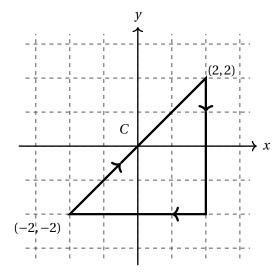
(d) What is the absolute maximum value of f on the region $D = \{x^2 + y^2 < 1\}$? Write DNE if none exists. _____

Max value on
$$D =$$
 (1 **point**)

7. Let $\mathbf{F} = \left\langle 3x^2y - y, \ x^3 + 2x + \sqrt{1 + y^4} \right\rangle$. For *C*, the curve shown at right, compute the line integral

$$\int_C \mathbf{F} \cdot d\mathbf{r}: \qquad -24 - 16 - 8 \quad 0 \quad 8 \quad 16 \quad 24$$
(2 points)





- **8.** Determine the limits in the problems below. Be sure to *explain your reasoning* for full credit. If a limit does not exist, write "DNE" in the box provided. **(2 points each)**
 - (a) Determine $\lim_{(x,y)\to(0,0)} \frac{xy+x^2}{x^2+y^2}$.

$$\lim_{(x,y)\to(0,0)} \frac{xy + x^2}{x^2 + y^2} =$$

(b) Determine $\lim_{(x,y)\to(0,0)} \frac{x^2}{2x^2 - x^3y}$.

$$\lim_{(x,y)\to(0,0)} \frac{x^2}{2x^2 - x^3 y} =$$

9. The function f(x, y) describes the temperature (°C) in a region R in the plane, so that f(x, y) is the measured temperature at position (x, y). Some measured values of f and its rates of change are given in the following table. Assuming that f is differentiable, use this data to approximate the temperature at (1.5, 3.1).

(2 points)

(x, y)	f(x, y)	$f_x(x,y)$	$f_y(x,y)$
(1,3)	4	2	3
(0.5, 0.1)	-5	-1	-6

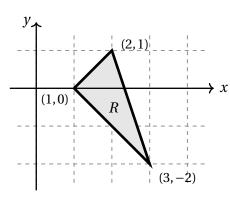
Temperature at (1.5, 3.1) is \approx

10. Suppose $f: \mathbb{R}^2 \to \mathbb{R}$ is a differentiable function of x and y where $x(s,t) = t\cos(2s) - e^{2t}$ and $y(s,t) = t\sin(2s) + e^{t\sin(t)}$. Let g(s,t) = f(x(s,t),y(s,t)). Use the table of values on the right, to calculate $g_s\left(\frac{\pi}{4},\pi\right)$. **(5 points)**

	g	f	f_x	f_y
$(\pi/4,\pi)$	2	-1	3	5
$(-e^{2\pi},\pi+1)$	4	2	-3	-2

$$g_s\left(\frac{\pi}{4},\pi\right) =$$

11. Using the transformation $T(u,v) = \langle u+v+1, u-v \rangle$, rewrite the integral $\iint_R x \, dA$ as an iterated integral over a subset S in the uv-plane with T(S) = R. Do not evalute the integral. (5 points)



$$\iint_{R} x \, dA = \int \int du \, dv$$

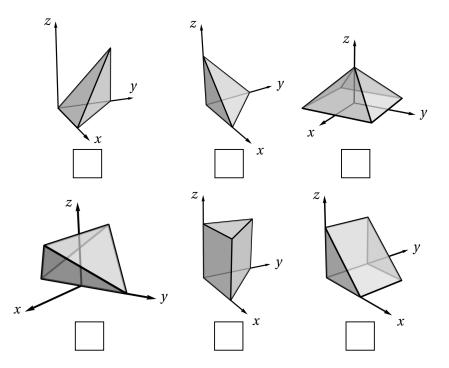
Note: The order of integration is already determined.

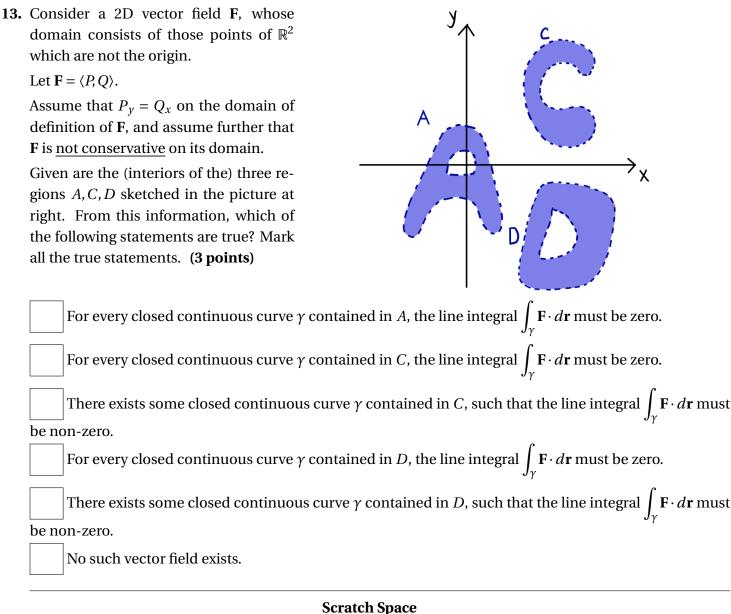
12. For each of the given integrals, label the box below the picture of the corresponding region of integration.

(2 points each)

(A)
$$\int_0^1 \int_0^1 \int_0^{1-z} f(x, y, z) \, dx \, dy \, dz$$

(B)
$$\int_0^1 \int_{-1+z}^{1-z} \int_{-1+z}^{1-z} g(x, y, z) \, dx \, dy \, dz$$





	T . T			•		11
14.	Let $\mathbf{F} = 0$	1 + x +	vz)1+2v	′] + ((z+1)	$yx)\mathbf{K}$

(a) Compute curl(F). (1 point)

$$\operatorname{curl}(\mathbf{F}) = \langle , , \rangle$$

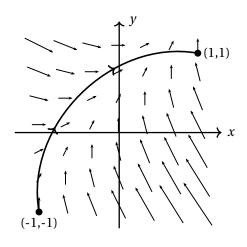
(b) Let *S* be the portion of the cone $z = \sqrt{x^2 + y^2}$ with $z \le 2$, with outward pointing normal vector. Compute the flux of curl(**F**) through *S*. **(5 points)**

(c) Let E be the sphere $x^2 + y^2 + z^2 = 1$ with outward pointing normal. Compute the flux of **F** through E. (3 points)

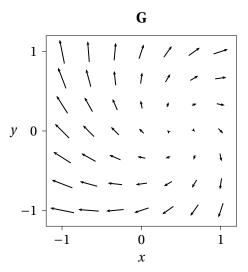
(d) Is **F** conservative? Yes No (1 **point**)

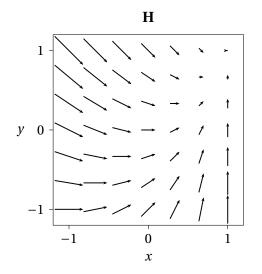
15. A conservative force field **F** is shown at right. Compute the work done by **F** to move a particle from (-1,-1) to (1,1) along the indicated path. For scale, $\mathbf{F}(0,0) = \langle 0,0.2 \rangle$.

-1 $-\frac{2}{5}$ $-\frac{2\sqrt{2}}{5}$ 0 $\frac{2\sqrt{2}}{5}$ $\frac{2}{5}$ 1 (2 points)



16. Three vector fields are shown below, **exactly one** of which is conservative. For each of the following questions, circle the best answer.





- (a) The conservative field is: F G H (2 points)
- (b) The vector field $(1-x)\mathbf{i} + (x-y)\mathbf{j}$ is: **F G H** (1 point)
- (c) The vector field $\operatorname{curl}(\mathbf{G})$ is constant. The value of $\operatorname{curl}(\mathbf{G})$ at any point is: $\langle 0,0,-1\rangle \quad \langle 0,0,0\rangle \quad \langle 0,0,1\rangle$ (1 **point**)
- (d) **Exactly one** of these vector fields has nonconstant divergence. Circle it: F G H (1 point)