- 1. Consider the function f(x, y) whose contour map is shown at right, where the value of f on each level curve is indicated by the number along it. For each part, give the answer that is **most consistent** with the given data. For (a) and (b) be sure to explain your reasoning in the space provided. If the limit does not exist, write "DNE" in the answer box.
 - (a) Determine $\lim_{x\to 0} f(x,0)$. (2 points)

$$\lim_{x \to 0} f(x,0) =$$

(a) Determine $\lim_{(x,y)\to(0,0)} f(x,y)$. (2 points)

$$\lim_{(x,y)\to(0,0)} f(x,y) =$$

(c) Determine
$$\lim_{(x,y)\to(1,-1)} f(x,y)$$
. (1 point)

$$\lim_{(x,y)\to(1,-1)} f(x,y) =$$

2. Mark the box next to the curve that is parameterized by $\mathbf{r}(t) = \langle 2\cos(t), 2\sin(t), \cos(4t) \rangle$ for $0 \le t \le 2\pi$. **(2 points)**

3. Suppose $f: \mathbb{R}^2 \to \mathbb{R}$ has the table of values and partial derivatives shown at right. For x(s,t) = s + 2t and $y(s,t) = s^2 - t$, let $F(s,t) = f\left(x(s,t),y(s,t)\right)$ be their composition with f. Compute $\frac{\partial F}{\partial s}(2,1)$. **(4 points)**

(x,y)	f(x, y)	$\frac{\partial f}{\partial x}$	$\frac{\partial f}{\partial y}$
(2,1)	0	7	6
(2,-1)	-12	7	-1
(3,3)	19	-8	5
(4,3)	7	3	2

$$\frac{\partial F}{\partial s}(2,1) =$$

- 4. Consider the region D in the plane bounded by the curve C as shown at right. For each part, circle the best answer.(1 point each)
 - (a) For $\mathbf{F}(x, y) = \langle x + 1, y^2 \rangle$, the integral $\int_C \mathbf{F} \cdot d\mathbf{r}$ is negative zero positive
 - (b) The integral $\int_C (ydx + 2dy)$ is negative zero positive

(c) The integral $\iint_D (y-x) dA$ is negative zero positive

Scratch Space

5. For each function label its graph from among the options below:

- (A) $x^2 y^2$
- (B) $\cos(x+y)$
- (C) $1 e^{-(x^2 + y^2)}$

6. A rectangular metallic plate R is placed in the plane with vertices at (-2,-1), (-2,1), (2,-1), and (2,1). The density (in g/cm^2) of the plate, $\rho(x,y)$, at various points is shown in the table, where x and y are measured in cm. Circle the best estimate for the mass of the plate. **(2 points)**

o(r, y)		x
$\rho(x,y)$	-1	1
1/2	4	7
y - 1/2	1	3

Mass of R ≈

0 4

15

30

46

60 78

grams.

Scratch Space

- 7. Let R be the rectangle whose vertices are (1,0), (2,1), (3,-2), and (4,-1) shown at the right.
 - (a) Find a transformation T(u, v) from the uv-plane to the xy-plane with T(S) = R, where $S = \{(u, v) \mid 0 \le u \le 1, 0 \le v \le 1\}$ is the unit square. **(4 points)**

$$T(u,v) = (,)$$

(b) Use your answer in (a) to fill in the integrand below to evaluate $\iint_R \cos(x) dA$ by a change of coordinates. (2 points)

$$\iint_{R} \cos(x) \ dA = \int_{0}^{1} \int_{0}^{1} du \ dv$$

8. For each of the integrals below, label the solid corresponding to the region of integration.

(2 points each)

$$(A) \int_0^{\pi} \int_0^1 \int_0^{r^2} f(r,\theta,z) \, r \, dz \, dr \, d\theta$$

$$(B) \int_0^\pi \int_0^1 \int_0^{\sqrt{z}} f(r,\theta,z) \, r \, \, dr \, dz \, d\theta$$

- **9.** Let *S* be the surface in \mathbb{R}^3 parameterized by $\mathbf{r}(u, v) = \langle u \cos(v), u \sin(v), v \rangle$ for $0 \le u \le 1$ and $0 \le v \le \pi$.
 - (a) Check the box below the correct picture of *S*. **(2 points)**

(b) Fill in the integrand below so that the integral computes $\iint_S y \, dS$. (4 points)

$$\iint_{S} y \, dS = \int_{0}^{\pi} \int_{0}^{1}$$

dudv

 $mass = \int \int \int d\rho \, d\theta \, d\phi$

Scratch Space

integration. (4 points)

$$Vol(E) = \int \int dx \, dy \, dz$$

(b) Let *S* be the curved portion of the boundary of *E* where $x^2 + y = 1$. Parameterize *S* by **r**: $D \rightarrow S$, where the domain D is a rectangle. (4 points)

$$D = \left\{$$

$$\mathbf{r}(u,v) = \langle \qquad , \qquad , \qquad \rangle$$

12. Here are plots of six vector fields on the box where $0 \le x \le 1$, $0 \le y \le 1$, and $0 \le z \le 1$. For each part, circle the best answer. (1 point each)

(a) The vector field given by $\langle z, 1, 0 \rangle$ is:

- (b) Exactly one of these vector fields has nonzero divergence. It is: A B C D E F For this vector field, the divergence is generally: negative positive
- (c) The vector field **D** is conservative: false true
- (d) Exactly one of the vector fields is constant, that is, independent of position. It is:

A B C D E F

(e) The vector field curl **B** is constant. The value of curl **B** is:

i -ij k $-\mathbf{k}$ 0 $-\mathbf{j}$

(f) The vector field that is the gradient of a function f whose level sets A B C D E F are shown at right is:

- **13.** Let R be the solid region in \mathbb{R}^3 bounded by the cylinder $x^2 + y^2 = 1$ and the planes z = 0 and z = 1. Divide the boundary ∂R into three parts: the bottom B where z = 0, the top T where z = 1, and the curved surface S where $x^2 + y^2 = 1$. Orient all of these surfaces by the normal vectors that point out of R. Consider the vector field $\mathbf{F} = \langle 2x, 0, 1-z \rangle$.
 - (a) Compute the flux of **F** through each of *S*, *T*, and *B*. (Hint: $\int_0^{2\pi} \sin^2 t \ dt = \int_0^{2\pi} \cos^2 t \ dt = \pi$.) **(6 points)**

$$\iint_{S} \mathbf{F} \cdot \mathbf{n} \, dS = \qquad \qquad \iint_{B} \mathbf{F} \cdot \mathbf{n} \, dS = \qquad \qquad \iint_{B} \mathbf{F} \cdot \mathbf{n} \, dS =$$

(b) Use the Divergence Theorem to check your computation for the flux through ∂R in (a–c). (2 points)

$$\iint_{\partial R} \mathbf{F} \cdot \mathbf{n} \ dS =$$

- **14.** The surface *S* shown at right has boundary the circle *C* of radius 2 in the *xz*-plane.
 - (a) Consider the vector field $\mathbf{F} = \langle z, y, -x \rangle$ on \mathbb{R}^3 . With respect to the normal vector field \mathbf{n} indicated, compute the flux of curl \mathbf{F} through S. (5 **points**)

$$\iint_{S} \operatorname{curl} \mathbf{F} \cdot d\mathbf{S} =$$

(a) Consider the vector field $\mathbf{G} = \langle 3z + e^{\sin x}, e^{\cos y}, \sin(e^z) \rangle$. With $C = \partial S$ oriented **counter-clockwise** from our viewpoint, compute $\int_C \mathbf{G} \cdot d\mathbf{r}$. **(4 points)**

$$\int_C \mathbf{G} \cdot d\mathbf{r} =$$

15. Consider the vector fields $\mathbf{A} = \langle 2x, z, y \rangle$ and $\mathbf{B} = \langle x, 0, y \rangle$ and $\mathbf{C} = \langle y, 0, z \rangle$.

(1 point each)

(a) Circle the unique vector field that is conservative:

A	В	C

(b) Suppose **F** is your answer in (a) and W is any curve starting at (2,0,-1) and ending at (1,1,1).

Circle the value of
$$\int_W \mathbf{F} \cdot d\mathbf{r}$$
:

Circle the value of
$$\int_W \mathbf{F} \cdot d\mathbf{r}$$
: $\begin{bmatrix} -5 & -4 & -3 & -2 & -1 & 0 & 1 & 2 & 3 & 4 & 5 \end{bmatrix}$

(c) Circle the unique vector field that is curl **G** for some vector field **G**:

16. Let *S* and *H* be the surfaces at right; the boundary of *S* is the unit circle in the xy-plane, and H has no boundary. Suppose there is a **negative** charge Q placed at the origin and let **E** be the resulting electrical field. For each part, circle the correct answer. (1 point each)

(b) The flux $\iint_H \mathbf{E} \cdot \mathbf{m} \, dS$ is: negative zero positive

(c) Consider the sphere *S* where $x^2 + y^2 + z^2 = 100$. The flux with respect to the outward normals \mathbf{u} is:

$$\iint_{S} \mathbf{E} \cdot \mathbf{u} \ dS =$$

(d) The integral $\iint_H x^2 y^2 + z^2 dS$ is:

Extra Credit: (5 points)

Consider the solid region $E = \{-2 \le x \le 6 \text{ and } -2 \le y \le 2 \text{ and } -2 \le z \le 2 \text{ and } x^2 + y^2 \ge 1 \text{ and } (y-4)^2 + z^2 \ge 1\}$ inside \mathbb{R}^3 .

- (a) Draw an accurate picture of E.
- (b) Give a vector field \mathbf{F} on E where curl $\mathbf{F} = 0$ but \mathbf{F} is not conservative.
- (c) Find a second vector field **G** on *E* where curl **G** = 0 and **G** is not conservative where $\mathbf{G} \neq a\mathbf{F} + \nabla h$ for all a in \mathbb{R} and differentiable functions $h \colon E \to \mathbb{R}$.

Scratch page. Feel free to detach from the rest of the exam. It does not need to be turned in.