1. Consider the function f(x,y) whose contour map is shown at
right, where the value of f on each level curve is indicated by
the number along it. For each part, give the answer that is most
consistent with the given data. For (a) and (b) be sure to ex-
plain your reasoning in the space provided. If the limit does
not exist, write “DNE” in the answer box.

(a) Determine lin}) f(x,0). (2 points)
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(a) Determine lim f(x,y). (2 poihts)
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(¢) Determine lim  f(x,y). (1 point)
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2.7 Mark the box next to the curve that is parameterized by r(z) = (2 cos(t), 2sin(t), cos(4 t)} for0 <t <2m.

(2 points)




3. Suppose f: R* — R has the table of values and partial derivatives shown at right. For x(s, 1) = s+2¢ and
OF
y(s, 1) = s> =, let F(s, 1) = f(x(s, 1), y(s, t)) be their composition with f. Compute &FZ 1) (4 points)
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4. Consider the region D in the plane bounded by the curve
C as shown at right. For each part, circle the best answer.

P Q

(a) ForF(x,y) = (x+1, y*), the integral | F-dr is
c

(1 point each)
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(b) The integral f (ydx+2dy) is (c) The integral j]D (y—x)dA is
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(1 point each)

5. For each function label its graph from among the options below:
© 1-e @

(A)

6. A rectangular metallic plate R is placed in the plane with vertices at (-2, -1), (=2,1), (2

2 (B) cos(x+7)

x*—y

A

,—1), and (2,1); The

density (in g/cm?) of the plate, p(x, y), at various points is shown in the table, where x and y are measured

in cm. Circle the best estimate for the mass of the plate.

(2 points)

x
p(x,¥) 11 P aan
172 i 7 Massof R~ | 0 4 15 /30) 46 60 78 | grams.
y —1/2 1 3 —
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7. Let R be the rectangle whose vertices are (1,0), (2,1), (3,-2), and Y4
(4, -1) shown at the right. .

(a) Find a transformation T (u, v) from the uv-plane to the xy-plane

H
% §

with T(S) = R, where S = {(&,v) | 0 < u < 1,0 < v < 1} is the unit
square. (4 points) P f -
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(b) Use your answer in (a) to fill in the integrand below to evaluate [[r cos(x) dA by a change of coordinates.

(2 points)
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8. For each of the integrals below,
label the solid corresponding to
the region of integration.

(2 points each)
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9. Let S be the surface in R3 parameterized by r(u, v) = (ucos(v), usin(v), v)for0<su<1 and0<v <.

(a) Check the box below the correct picture of S. (2 points)

(b) Fill in the integrand below so that the integral computes f f y dS. (4 points)
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10. Let R be the region in the positive octant that lies above the cone x% + y? = z% and below the plane z = 5.
Suppose R is made of material of density p(x,y,z) = x. Fill in the limits and integrand so that the integral
computes the mass of R using spherical coordinates. Be sure to follow the provided order of integration.

(5 points)
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11. Consider the region E shown at right, which is bounded by the xy-plane, z (i 0y 0 )
the plane z — y = 0 and the surface ?+y=1.

(a) Fill in the limits and integrand of the triple integral below so that it (-3 0, o) |
computes the volume of E. Be sure to follow the provided order of
integration. (4 points)
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(b) Let S be the curved portion of the boundary of E where x?> +y = 1. Parameterize Sbyr: D — S, where
the domain D is a rectangle. (4 points)
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12. Here are plots of six vector fields on the box where 0 < x<1,0<y<1,and 0 < z< 1. For each part, circle

the best answer. (1 point each)

(a) The vector field given by (z, 1, 0) is: 1

(b) Exactly one of these vector fields has nonzero divergence. Itis: | A B @ D E F

For this vector field, the divergence is generally: | negative 603&‘(?\7%

(c) The vector field D is conservative: true @

(d) Exactly one of the vector fields is constant, that is, independent of positidn. Itis:

(e) The vector field curl B is constant. The value of curlB is:

c o () gk ko

(f) The vector field that is the gradient of a function f whose level sets
are shown atrightiss |A B C D E@




13. Let R be the solid region in R? bounded by the cylinder x*+ y* = 1 and the planes z = 0 and z = 1. Divide the
boundary AR into three parts: the bottom B where z = 0, the top T where z =1, and the curved surface S
where x2 + y? = 1. Orient all of these surfaces by the normal vectors that point out of R. Consider the vector

field F=(2x, 0, 1-2z).
(a) Compute the flux of F through each of S, T, and B. (Hint: [P sin?t dt = [{"cos’*t dt=m.) (6 points)
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. (2 points)

(b) Use the Divergence Theorem to check your computation for the flux through dR in (a—c)
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~ 14. The surface S shown at right has boundary the circle C of radius 2

in the xz-plane.

(a) Consider the vector field F = ( z, ¥ —x) on R3. With respect to
the normal vector field n indicated, compute the flux of curlF

through S. (5 points)
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(a) Consider the vector field G = (3z +eSin¥ ) gf08Y gin(e?) ). With C =4S oriented counter-clockwise from

“our viewpoint, compute [, G-dr. (4 points)
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15. Consider the vector fields A= (2x, z, y)and B=(x, 0, y) and C=(y, 0, z). (1 point each)

(a) Circle the unique vector field that is conservative: @ B C

?ojv.’(‘\vw'; Yi* NE = F

(b) Suppose F is your answer in (a) and W is any curve starting at (2,0,~1) and ending at (1,1, 1).
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(c) Circle the unique vector field that is curl G for some vector field G: | A B / C S\ = _0
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16. Let S and H be the surfaces at right; the boundary of S is the |
unit circle in the xy-plane, and H has no boundary. Suppose
there is a negative charge Q placed at the origin and let E be
the resulting electrical field. For each part, circle the correct
answer. (1 point each)

NN

(a) The flux f f E-nds is: negaﬁ/ve/ zero positive
S

=7
(b) The flux f f E-mdS is: | negative ﬁero positive
H

() Consider the sphere S where x2 + y® + z% = 100. The flux
with respect to the outward normals u is:
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(d) The integral f f x*y? +z2dSis: | negative zer?@sitive
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Extra Credit: (5 points)
Consider the solid region E = {-2<x<6and —2<y<2and -2<z<2and x*+)? =1 and (-4 +2* 2 1}
inside R3.

(a) Draw an accurate picture of E.

(b) Give a vector field F on E where curlF = 0 but F is not conservative.

(c) Find a second vector field G on E where curlG = 0 and G is not conservative where G # aF + Vh for all a
in R and differentiable functions i: E — R.
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