1. (a)	Consider the points $A = (0,1,2)$, $B = (2,2,3)$, and $C = (-1,3,4)$. Compute the vectors $\mathbf{v} =$	\overrightarrow{AB} and $\mathbf{w} =$	\overrightarrow{AC} .
	(2 points)		

$$\mathbf{v} = \langle \qquad , \qquad \rangle \qquad \mathbf{w} =$$

$$\mathbf{w} = \langle \qquad , \qquad \rangle$$

(b) Consider the points D = (0,2,1), E = (1,4,1), and F = (3,8,2) and the vectors $\mathbf{a} = \langle 1,2,0 \rangle$, $\mathbf{b} = \langle 3,6,1 \rangle$, and $\mathbf{c} = \langle 2,4,1 \rangle$ as shown at right. Find a normal vector \mathbf{n} to the plane containing the points D, E, and F. (3 points)

$$\mathbf{n} = \left\langle \qquad , \qquad \right\rangle$$

(c) Let P = (2, -1, 1) and $\mathbf{u} = \langle 3, 2, 4 \rangle$. Find a linear equation for the plane that contains P and has normal vector \mathbf{u} . (2 points)

Equation:
$$x + y + z = z$$

- (d) For two vectors \mathbf{v} and \mathbf{w} in \mathbb{R}^3 , which of the following does $|\mathbf{v} \times \mathbf{w}|$ measure? Circle your answer. (1 point)
 - The length of $\mathbf{v} \mathbf{w}$.
 - The area of the parallelogram determined by \boldsymbol{v} and $\boldsymbol{w}.$
 - The volume of the parallelepiped determined by \mathbf{v} , \mathbf{w} , and $\mathbf{v} \times \mathbf{w}$.

2. (a) Find the midpoint M of the straight-line segment between the points P = (1,3,-2) and Q = (3,-3,4). (2 points)

$$M = \left(\begin{array}{ccc} & & & \\ & & & \\ \end{array} \right)$$

(b) Let *L* be the line parametrized by $\mathbf{r}(t) = \mathbf{a} + t\mathbf{b}$ for $\mathbf{a} = \langle 1, 0, 2 \rangle$ and $\mathbf{b} = \langle 2, -1, 1 \rangle$. Find the point *Q* of intersection of the line *L* with the plane whose equation is 3x - 2y + z = 14. (3 points)

$$Q = \left(\begin{array}{ccc} & & & \\ & & & \\ \end{array} \right)$$

3. Consider the function $f(x, y) = \frac{xy - x^2y}{x^2 + y^2}$ for $(x, y) \neq (0, 0)$. Evaluate $\lim_{(x, y) \to (0, 0)} f(x, y)$ or explain why it does not exist. **(5 points)**

4. For each function

- (a) $-x^2 y^2$
- (b) $\cos(x+y)$
- (c) $y^2 e^{-x^2}$

label its graph and its level set diagram from among the options below. Here each level set diagram consists of level sets $\{f(x,y)=c_i\}$ drawn for evenly spaced c_i . (9 points)

∂f	
$\frac{\partial}{\partial x} =$	

$$\frac{\partial f}{\partial y} =$$

(b) Consider the graph of $f: \mathbb{R}^2 \to \mathbb{R}$ shown at right. If P is the point (a, b, f(a, b)), find the sign of each of the quantities below. Circle your answers. (1 point each)

$$f_x(a,b)$$
: positive negative 0 $f_y(a,b)$: positive negative 0 $f_{xx}(a,b)$: positive negative 0

(c) Use the contour plot of f(x, y) shown at right to estimate $f_x(2, 1)$ and $f_y(2, 1)$. For each, circle the number below that is closest to your estimate. **(4 points)**

$$f_x(2,1)$$
: -3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3 $f_y(2,1)$: -3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3

6. Suppose a function
$$f: \mathbb{R}^2 \to \mathbb{R}$$
 has $f(1,2) = 5$, $\frac{\partial f}{\partial x}(1,2) = -2$, and $\frac{\partial f}{\partial y}(1,2) = 3$. Use linear approximation to estimate $f(1.1,1.9)$. (3 points)

7. Suppose

$$f(x,y) \colon \mathbb{R}^2 \to \mathbb{R}, \quad x(s,t) \colon \mathbb{R}^2 \to \mathbb{R}, \quad \text{and} \quad y(s,t) \colon \mathbb{R}^2 \to \mathbb{R}$$
 are functions. Let $F(s,t) = f(x(s,t),y(s,t))$ be their composition.

(a) Write the formula for $\frac{\partial F}{\partial s}$ using the Chain Rule. (1 **points**)

$$\frac{\partial F}{\partial s} =$$

(b) Suppose x(s, t) = 2s + t and $y(s, t) = s^2t - 1$ and that f(x, y) has the table of values and partial derivatives shown at right. Compute $\frac{\partial F}{\partial s}(2, 1)$. **(4 points)**

(x, y)	f(x, y)	$\frac{\partial f}{\partial x}$	$\frac{\partial f}{\partial y}$
(2,3)	0	3	6
(2, 1)	2	-2	-1
(2,4)	3	4	6
(5,3)	1	3	5

$$\frac{\partial F}{\partial s}(2,1) =$$

Extra credit problem: Let $E: \mathbb{R}^2 \to \mathbb{R}$ be given by $E(x, y) = 2x + y^2$. Find a $\delta > 0$ so that $|E(\mathbf{h})| < 0.01$ for all $\mathbf{h} = (x, y)$ with $|\mathbf{h}| < \delta$. Carefully justify why the δ you provide is good enough. **(2 points)** Scratch space below and on back