- **1.** Consider the vectors: $\mathbf{a} = \langle 1, 0, -1 \rangle$ $\mathbf{b} = \langle 1, 1, 1 \rangle$ $\mathbf{c} = \langle -1, 1, 0 \rangle$.
 - (a) Compute $\mathbf{a} \times \mathbf{b}$. (3 points)

$$\mathbf{a} \times \mathbf{b} = \left\langle \qquad , \qquad \right\rangle$$

(b) Compute the volume of the parallelepiped determined by the vectors **a**, **b**, and **c**. (2 points)

Volume =

2. Given that \mathbf{u} and \mathbf{v} in the picture at left have length 1, compute $\mathbf{u} \cdot \mathbf{v}$, $\mathbf{u} \cdot \mathbf{w}$, and $\text{proj}_{\mathbf{v}}\mathbf{w}$. (1 point each)

$$\mathbf{u} \cdot \mathbf{v} =$$

$$\mathbf{u} \cdot \mathbf{w} =$$

$$proj_{\mathbf{v}}\mathbf{w} =$$

3. A particle moves with constant velocity (3,1,-1) starting from the point (3,2,4) at time t=0. When and where will it cross the xy-plane? **(3 points)**

When: t =

Where: (, ,

4.	Let A be the	plane given by x	-z=1 and B the	e plane given by	y x + y + z = 2.

(a) Find a normal vector **n** for the plane *A*. (1 **points**)

$$\mathbf{n} = \left\langle \qquad , \qquad , \qquad \right\rangle$$

(b) Find the angle between the two planes. (2 points)

$$\theta =$$

(c) Find the equation of a plane *C* which is perpendicular to both *A* and *B*. (3 points)

Equation:
$$x+$$
 $y+$ $z=$

5. Exactly one of the following two limits exists. Circle the one that exists and justify your answer. (**5 points**)

$$\lim_{(x,y)\to(0,0)} \left(\frac{x^2 - y^2}{\sqrt{x^2 + y^2}}\right) \qquad \qquad \lim_{(x,y)\to(0,0)} \left(\frac{xy}{\left(x^2 + y^2\right)^2}\right)$$

7. Circle the equation for the quadratic surface shown at right. (3 points)

(a)
$$x^2 + y^2 + z^2 = 1$$

(b)
$$x^2 - y^2 - z^2 = -1$$

(c)
$$x^2 + y^2 - z^2 = -1$$

(d)
$$x^2 - y^2 - z^2 = 1$$

(e)
$$x - y^2 - z^2 = 1$$

8. Is the function $f: \mathbb{R}^2 \to \mathbb{R}$ given at right continuous at (0,0)? Justify your answer. (2 points)

$$f(x,y) = \begin{cases} x^2 + y + 1 & \text{if } (x,y) \neq (0,0), \\ 0 & \text{if } (x,y) = (0,0). \end{cases}$$

9. Let f(x, y) be a function with values and derivatives in the table. Use linear approximation to estimate f(2.1, 0.9). (3 points)

(x, y)	f(x,y)	$\frac{\partial f}{\partial x}(x,y)$	$\frac{\partial f}{\partial y}(x,y)$
(-1,3)	0	4	4
(2,1)	2	-1	3
(2,4)	3	7	7
(3,6)	1	-3	-5

$$f(2.1,0.9)\approx$$

10. Suppose f(x, y) has the contour plot below right, with points labelled. Circle the best answer to each of the following questions: (1 point each) y

- (b) $\frac{\partial f}{\partial x}(b)$ is: **positive negative 0**
- (c) $\frac{\partial^2 f}{\partial^2 v}(c)$ is: **positive negative 0**
- (d) Circle one:

$$\frac{\partial f}{\partial x}(a) > \frac{\partial f}{\partial x}(b)$$
 $\frac{\partial f}{\partial x}(a) < \frac{\partial f}{\partial x}(b)$

11. An exceptionally tiny spaceship positioned as shown is travelling so that its x-coordinate increases at a rate of 1/2 m/s and y-coordinate increases at a rate of 1/3 m/s. Use the Chain Rule to calculate the rate at which the distance between the spaceship and the point (0,0) is increasing. **(6 points)**

Distances in meters

Rocket courtesy of xkcd.com

- **12.** Let $f: \mathbb{R}^2 \to \mathbb{R}$ be the function whose graph is shown at right.
 - (a) Find the equation of the tangent plane to the graph at (0,0,0). **(2 points)**

(b) The partial derivative $\frac{\partial^2 f}{\partial x \partial y}(0,0)$ is (circle your answer):

positive negative

(1 point)

13.	Extra Credit Problem.	Suppose $f: \mathbb{R}^2 \to \mathbb{R}$ is continuous at $(0,0)$ with $f(0,0)=2$ and partial derivatives	atives
	$f_{x}(0,0) = 1$ and $f_{y}(0,0) = 1$	=-1. If in addition	

$$\lim_{t \to 0} \frac{f(t,t) - 2}{t} = 1$$

can f be differentiable at (0,0)? Carefully justify your answer. (3 points)

Scratch work may go below and on the back of this sheet.