Your name:Your NetID:	
-----------------------	--

No notes, books, or electronics out or hats or sunglasses on during the exam.

You must show your work on all questions.

Mark your Lecture section and your discussion Section in the table below:

Lecture Section		Instructo	r	Time MWF)	I	Lecture Section		ctor	Time (MWF)	Ш	Lecture Section		Instructor	Time (MWF)
AL1		Leininge	r	8am		BL1	Tolm	an	11am			CL1	Cellarosi	2pm
A	AL2	Leininge	er	9am		BL2	Tolm	ian	$12 \mathrm{pm}$			CL1	Cellarosi	3pm
Discussion Section		Instructo	r	Time TuTh)	Discussion Section		Instru	ctor	Time (TuTh)	Ī	Discussion Section		Instructor	Time (TuTh)
A	ADA	Hockensm	ith	8am		BDA	Fiel	ld	8am			CDA	Compaan	8am
A	ADB	Gartland	d	9am		BDB	Fiel	ld	9am			CDB	Compaan	9am
A	ADC	Aramya	n	10am		BDC	McDo	nald	10am			CDC	Tian	10am
A	ADD	Aramya	n	11am		BDD	McDo	nald	11am			CDD	Weigandt	11am
A	ADE	Yi		12pm		BDE	War	ng	$12 \mathrm{pm}$			CDE	Tian	12pm
A	ADF	Yi		1pm		BDF	For	d	$1 \mathrm{pm}$		CDF CDG CDH CDI		Gondolo	1pm
A	ADG	Song		2pm		BDG	Donep	oudi	$2 \mathrm{pm}$				Golze	2pm
A	ADH	Tran		3pm		BDH	Romi	ney	$3 \mathrm{pm}$				Golze	3pm
A	ADI	Tran		4pm		BDI	Romi	ney	$4\mathrm{pm}$				Gondolo	4pm
A	ADJ	Huo		9am		BDJ	Prui	itt	8am			CDJ	Taha	8am
A	ADK	Song		9am BD		BDK	Pruitt		9am			CDK	Taha	9am
A	ADL	Gartland	d I	10 am		BDL	War	ng	10 am			CDL	Hong	10am
A	ADM	Huo		11am		BDM	Gae	o	11am			CDM	Hong	11am
A	ADN	Lu		$12 \mathrm{pm}$		BDN	For	d	$2 \mathrm{pm}$			CDN	Toprak	12pm
A	ADO	Lu		1pm		BDO	Donep	oudi	$3 \mathrm{pm}$	-		CDO	Toprak	1pm
A	AD1	Wise]	l1 am		BDP	Gae	o	$4\mathrm{pm}$			CDP	Pynn-Coates	2pm
A	AD2	Loeb		9am		J						CDQ	Pynn-Coates	3pm
A	AD3	Michiels	5	$3 \mathrm{pm}$								J		
		Question:	1	2	3	4	5	6	7	11	8	Total		
		Points:	8	5	4	4	6	6	10		7	50		
		Score:												

1.	(8 points)	Find an	equation	for th	e plane	that	passes	through	the	point	P	=	(1, 2, 3)	3)
	and contai	ins the lir	ne L given	by th	e paran	netric	equation	on						

$$x(t) = 1 - 3t$$
, $y(t) = 3$, and $z(t) = 6 + 2t$

for $-\infty < t < \infty$.

	x +		y +		z =	
--	-----	--	-----	--	-----	--

2.	(5 points) Find	$\operatorname{proj}_{\mathbf{a}} \mathbf{b},$	the	vector	projection	of 1	b	onto	$\mathbf{a},$	when	\mathbf{a}	=	$\langle 1, 3, 2 \rangle$	and
	$\mathbf{b} = \langle 2, -1, 0 \rangle.$													

$$\operatorname{proj}_{\mathbf{a}} \mathbf{b} = \left\langle \begin{array}{c|c} & & & \\ & & & \end{array} \right.$$
 , $\left[\begin{array}{c|c} & & & \\ & & & \end{array} \right]$

3.	(4 p	points) Which statement is true in \mathbb{R}^3 ?
		Two planes perpendicular to a third plane are parallel.
		Two lines parallel to the same plane are parallel.
		Two lines either intersect or are parallel.
		Two planes either intersect or are parallel.

4. (4 points) Mark exactly one box corresponding to the correct ending of the sentence.

" The limit
$$\lim_{(x,y)\to(0,0)}\frac{x^2y^2}{x^4+y^4}\quad \dots$$

does not exist because the limits as one approaches $(0,0)$ along the lines $x=0$ and $y=x$ are different."
does not exist because the limits as one approaches $(0,0)$ along the curves $y=x^2$ and $x=y^2$ are different."
exists because $\frac{x^2y^2}{x^4+y^4}$ is a composition of continuous functions"
exists because the partial derivatives of $\frac{x^2y^2}{x^4+y^4}$ are continuous at $(0,0)$ "
exists because the limits as one approaches $(0,0)$ along the lines $y=x$ and $y=-x$ are the same."

5. (6 points) For each function

(a)
$$\sin(x)\sin(y)$$
 (b) $-(x+y)^2e^{-(x+y)^2}$

label its graph from among the options below.

Math 241 Midterm Exam #1 Page 5 of 8

6. (6 points) Consider the function $f(x, y, z) = \cos(x) + x \sin(y) + y^2 z$. Compute $f_x(\frac{\pi}{2}, 0, 0)$.

$$f_x\left(\frac{\pi}{2},0,0\right) = \boxed{}$$

Compute $f_{zy}(0, \pi, 2)$.

$$f_{zy}(0,\pi,2) =$$

7. (10 points) Consider the differentiable function f whose level curves (or contours) are shown in the figure. The points (0,0) and (1,0) are labeled for reference.

A. Circle the best answer. f(2,2) =

-3 -2 -1 0 1 2 3

B. Circle the best answer. $f_{xy}(1, -2)$ is

positive negative zero

C. Circle the best estimate for h'(0) where $h(t) = f(\sin(t), t^2 + 3t + 2)$.

-10 -5 0 5 10

8.	(7 points) point (1,0	equation	of the t	angent	plar	ne to the gra	$ph z = x^3 -$	$-2\cos(y)$ as	t the
					. [7