1. Give a vector **v** perpendicular to the plane that contains the line x = 1 + t, y = 2 - 3t, z = 2 + 4t and the line x = 2, y = -1 + 2t, z = 6 - t. **(5 points)**

$$\mathbf{v} = \left\langle \qquad , \qquad , \qquad \right\rangle$$

2. Find the angle θ between the planes x = z + 8 and 2y = 1 - 2x + z. (5 points)

- **3.** Consider the points in the plane shown at right:
 - (a) Circle the vector that is equal to $2\overrightarrow{DE} \overrightarrow{CA}$:

			_			
\overrightarrow{DA}	\overrightarrow{DB}	\overrightarrow{DE}	\overrightarrow{DF}	\overrightarrow{DG}		
(2 points)						

 $\bullet E$

 $\bullet B$

 \bullet A

 $\bullet D$

(b) Circle the vector that is equal to $\overrightarrow{proj}_{\overrightarrow{CA}}\overrightarrow{DE}$:

\overrightarrow{DA}	\overrightarrow{DB}	\overrightarrow{DE}	\overrightarrow{DF}	\overrightarrow{DG}		
(2 points)						

- $\bullet F \qquad \bullet G$
- **4.** Suppose *S* is a quadric surface whose intersections with the following three planes are:

Plane $\{x = 1\}$

Plane $\{y = -1.5\}$

C

Plane $\{z = 1\}$

(a) Mark the box next to the picture of the portion of *S* where $-2 \le x \le 2$, $-2 \le y \le 2$, and $-2 \le z \le 2$: (2 points)

(b) Circle the equation that S satisfies:

$$x^2 + y^2 - z = 0$$
 $y^2 + z^2 - x^2 = 1$ $y^2 + z^2 = x^2$ (2 points)

5. Consider the limit $\lim_{(x,y)\to(0,0)} \frac{y^4\cos^2 x}{x^4+y^4}$. Does this limit exist? If so, what is its value? Justify your answer. (5 points)

6. Find the equation of the tangent plane to the graph of *g* at the point (1,0,4) based on the data in the table at right. **(4 points)**

	(x, y)	g(x, y)	$g_x(x,y)$	$g_y(x, y)$	$g_{xx}(x,y)$	$g_{yy}(x,y)$
	(0,4)	1	2	4	2	-2
ĺ	(1,0)	4	3	-1	0	0
ĺ	(1,4)	3	-6	5	1	-3

Equation: x + y + z = z

7. For each function, label its graph from among the options below by writing the corresponding letter in the box next to the graph. (2 points each)

(A)
$$-y^2 + \sin(x)$$

- **8.** Consider the contour plot of f(x, y) shown at right, where the dotted grid is made of unit squares.
 - (a) At the point *B*, is the derivative $\frac{\partial f}{\partial x}$ is:

(1 point)

(b) Estimate the partial derivatives $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ at the point A. For each, circle the number below that is closest to your estimate.

$$\frac{\partial f}{\partial x}$$
: -3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3

$$\frac{\partial f}{\partial x}$$
: -3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3 $\frac{\partial f}{\partial y}$: -3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3

- **9.** Suppose the temperature, measured in °C, on a tabletop is given by $F(x, y) = 40 x^2 y$, where x and y have units of centimeters.
 - (a) Mark the box below the contour plot that best matches the function F. (1 point)

(b) Suppose a small bug positioned at (3,1) is travelling so that its *x*-coordinate is **decreasing** at a rate of 1 cm/s and its *y*-coordinate is **increasing** at a rate of 2 cm/s. Use the Chain Rule to calculate the rate at which the temperature is changing from the bug's perspective. **(5 points)**

