

2. Consider the vectors $\mathbf{a} = \langle 0, 1, 1 \rangle$ and $\mathbf{b} = \langle -1, 0, 1 \rangle$	2.	Consider the vectors $\mathbf{a} =$	$\langle 0, 1, 1 \rangle$ and b = $\langle -1, 0, 1 \rangle$.
---	----	-------------------------------------	---

(a) Find $\operatorname{proj}_{\mathbf{a}}\mathbf{b}$, the vector projection of \mathbf{b} onto \mathbf{a} . (2 points)

$$\operatorname{proj}_{\mathbf{a}}\mathbf{b} = \left\langle \qquad , \qquad \right\rangle$$

(b) Find the distance from the point (-1,0,1) to the line through the origin whose direction vector is **a**. Hint: Use part (a)! (3 points)

distance =

- 3. Consider the vectors a, b, and c shown at right.
 Their lengths are |a| = |b| = 1 and |c| = 2.
 (1 point each)
 - (a) Circle the vector that best represents $\frac{1}{2}\mathbf{a} \mathbf{b}$.

|--|

(b) Circle the number closest to $\mathbf{a} \cdot \mathbf{c}$.

$$0 \ 1 \ \sqrt{2} \ \sqrt{3} \ 2$$

(c) A nonzero vector \mathbf{n} is pointing directly up out of the page. Circle the best description of $\mathbf{b} \times \mathbf{c}$.

it is a positive multiple of **n**

it is a negative multiple of **n**

it is not a multiple of ${\bf n}$

4. Consider the quadric surface Q defined by the equation $x^2 + y^2 - z^2 = 1$. Check the box below the picture of the curve formed by intersecting Q with the xz-plane. **(2 points)**

5. Consider the hyperboloid H of two sheets shown below. Circle the equation of H. (2 points)

$$y^2 + z^2 - x^2 = 1$$

$$x = y^2 + z^2 + 1$$

$$x^2 + y^2 + z^2 = -1$$

$$x^2 - v^2 - z^2 = 1$$

6. For each function, label its graph from among the options below by writing the corresponding letter in the box next to the graph. **(2 points each)**

(A)
$$-y^2 \sin(x)$$

(B)
$$\frac{1}{1+x^2+y^2}$$

7. Consider the function $g: \mathbb{R}^2 \to \mathbb{R}$ whose graph is shown at right. Let A and B be the points in \mathbb{R}^2 corresponding to two "peaks" of the graph, and C be the point in \mathbb{R}^2 corresponding to the dot on the graph. For each part, circle the answer that is most consistent with the picture. (1 point each)

(a) At the point *A*, the function *g* is:

	continuous differentiable both neither
--	--

(b) At the point *B*, the function *g* is:

continuous	differentiable	both	neither

(c) At the point *C*, the function $\frac{\partial g}{\partial x}$ is:

negative zero positive

- **8.** A differentiable function $f: \mathbb{R}^2 \to \mathbb{R}$ takes on the values shown in the table at right.
 - (a) Estimate the partials $f_x(1,1)$ and $f_y(1,1)$. (2 points)

				x		
				1.0		
	1.8	3.16 2.68 2.20 1.72	3.88	4.60	5.32	6.04
	1.4	2.68	3.24	3.80	4.36	4.92
у	1.0	2.20	2.60	3.00	3.40	3.80
	0.6	1.72	1.96	2.20	2.44	2.68
	0.2	1.24	1.32	1.40	1.48	1.56

$$f_x(1,1) \approx f_y(1,1) \approx$$

(b) Use your answer in (a) to approximate f(1.1,1.2). (2 points)

 $f(1.1, 1.2) \approx$

(c) Determine the sign of $f_{xy}(1,1)$. (1 point)

negative zero positive

Scratch Space

9. Suppose $f: \mathbb{R}^2 \to \mathbb{R}$ has the table of values and partial derivatives shown at right. For x(s,t) = s + 2t and $y(s,t) = s^2 - t$, let F(s,t) = f(x(s,t),y(s,t)) be their composition with f. Compute $\frac{\partial F}{\partial t}(2,1)$. **(4 points)**

(<i>x</i> , <i>y</i>)	f(x,y)	$\frac{\partial f}{\partial x}$	$\frac{\partial f}{\partial y}$
(2, 1)	0	7	6
(2, -1)	-12	7	-1
(3,3)	19	-8	5
(4,3)	7	3	2

$$\frac{\partial F}{\partial t}(2,1) =$$

Scratch Space

10. Consider the function f(x, y) whose contour map is shown at right, where the value of f on each level curve is indicated by the number along it. For each part, give the answer that is **most consistent** with the given data. **For (a) and (b) be sure to explain your reasoning in the space provided.** If the limit does not exist, write "DNE" in the answer box.

$$\lim_{x\to 0} f(x,0) =$$

(b) Determine $\lim_{(x,y)\to(0,0)} f(x,y)$. (2 points)

$$\lim_{(x,y)\to(0,0)} f(x,y) =$$

(c) Determine
$$\lim_{(x,y)\to(1,-1)} f(x,y)$$
. (1 **point**)

$$\lim_{(x,y)\to(1,-1)}f(x,y)=$$