$\theta = 0$	0 <	$\theta < \pi/2$	$\theta = \pi/2$	$\pi/2 < \theta < \pi$	$\theta = \tau$
Circle the value	of $ 2\mathbf{u} - \mathbf{v} $.	(2 points)			
	$\sqrt{10}$	$\sqrt{11}$	$\sqrt{30}$	$\sqrt{34}$	$\sqrt{35}$
It is the area	of the para	llelogram with	vertices determin	ned by 0, u, v , and v	w.
It is the area	of the para	llelogram with	vertices determin	ned by 0, \mathbf{u} , \mathbf{v} , and \mathbf{v}	W.
It is the volu	ıme of the p	arallelepiped o	letermined by the	vectors u , v , and v	v.
It has no me	eaning, but i	t is always defi	ined and sometim	es it is zero.	

$$(x(t), y(t), z(t)) = ($$
,

3. Find an equation of the plane that contains the line *L* parameterized by $\mathbf{r}(t) = \langle 1 + t, 1, 2t \rangle$ and the point P(2, 4, 0). **(5 points)**

$$x+$$
 $y+$ $z=$

- **4.** Let **a** and **b** be two vectors in \mathbb{R}^3 such that $|\operatorname{proj}_{\mathbf{a}}\mathbf{b}| = 2$. (1 point each)
 - (a) Determine the value of $|\operatorname{proj}_{3\mathbf{a}}\mathbf{b}|$. Circle your answer:

2	
_	
3	

5

6

10

(b) Determine the value of | proj_a5b |. Circle your answer:

$$\frac{2}{5}$$

2

2

5

3

7

5. Find the value of m such that the vector $\mathbf{u} = \langle -9, m, 6 \rangle$ is perpendicular to the plane 3x + y - 2z = 15. Circle your answer. **(2 points)**

$$m = -3$$

$$m = -1$$

$$m = 0$$

$$m = 1$$

$$m = 39$$

6. For each graph below, find the corresponding function from the options at right and write the corresponding letter in the box next to the graph. **(2 points each)**

- (A) $\sin(x+y)$
- (B) $x^2 y^2$
- (C) $\cos\left(\sqrt{x^2+y^2}\right)$
- (D) $\cos(x)\cos(y)$
- (E) $(x y)^2$
- (F) *xy*

Scratch Space

7.	Let	f(x)	ν) =	x^3y	+2x1	$r^{2} +$	v
	LCt	J (A).	y) —	λ y	$r \angle n$	/ T	<i>y</i> .

(a) Find the equation of the tangent plane to the surface z = f(x, y) at the point (0, 1, 1). (4 points)

Equation:
$$x+$$
 $y+$ $z=$

(b) Use linear approximation to estimate the value of f(0.2,0.9). (2 points)

8. For each equation below, write the corresponding letter in the box next to the picture of the surface it describes. (2 points each)

(A)
$$x^2 + y^2 - z^2 + 1 = 0$$

(B)
$$4x^2 + y^2 + 4z^2 - 1 = 0$$

9. The contour map of a differentiable function f(x, y) is shown at right, where each level curve is labeled by the corresponding value of f. For each part, circle the best possible answer. **2 points** for part (a) and the remaining parts are **1 point each**.

(b)
$$\frac{\partial f}{\partial y}(2,2)$$
 is negative zero positive

(c)
$$\frac{\partial^2 f}{\partial x^2}$$
 (2,2) is negative zero positive

(d)
$$\frac{\partial^2 f}{\partial y \partial x}$$
 (2,2) is negative zero positive

- **10.** Let $f(x, y) = \frac{xy^2}{3x^2 + y^4}$. Determine the limits in the problems below. Be sure to *explain your reasoning*. If a limit does not exist, write "DNE" in the box provided.
 - (a) Determine $\lim_{y\to 0} f(y^2, y)$. (2 points)

$$\lim_{y\to 0} f(y^2, y) =$$

(b) Determine $\lim_{(x,y)\to(0,0)} f(x,y)$. (2 points)

$$\lim_{(x,y)\to(0,0)} f(x,y) =$$

(c) Determine $\lim_{(x,y)\to(1,0)} f(x,y)$. (1 **point**)

$$\lim_{(x,y)\to(1,0)} f(x,y) =$$

11. Let $f: \mathbb{R}^2 \to \mathbb{R}$ be a differentiable function of two variables. Let $x(u,v) = u^2v$ and $y(u,v) = u\cos(v)$. Consider the function $g(u,v) = f\big(x(u,v),y(u,v)\big)$. Use the table of values for f and g below to compute $g_u(1,0)$. **(4 points)**

	g	f	f_x	f_{y}	f_{xx}	f_{xy}
(1,0)	5	1	2	-1	0	5
(0,1)	0	5	3	-2	10	-11

 $g_u(1,0) =$

Scratch Space