- **1.** Let A = (0, -1, 1), B = (1, -1, 3), C = (2, 0, 0) be three points.
 - (a) Find $\mathbf{v} = \overrightarrow{AB}$ and $\mathbf{w} = \overrightarrow{BC}$. (2 points)

$$\mathbf{v} = \left| \begin{array}{ccc} \left\langle & & & \\ & & \end{array} \right\rangle \right.$$

$$\mathbf{w} = \left\langle \begin{array}{cccc} & & & \\ & & & \\ & & & \end{array} \right\rangle$$

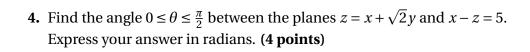
(b) Calculate the cross-product $\mathbf{v} \times \mathbf{w}$. (3 points)

$$\mathbf{v} \times \mathbf{w} = \boxed{ }$$

(c) Find the area of the triangle $\triangle ABC$. (2 points)

$$Area(\triangle) =$$

	Suppose that two planes have (non-zero) normal vectors \mathbf{n}_1 and \mathbf{n}_2 respectively, and that $\mathbf{n}_1 \times \mathbf{n}_2 = 0$. Which of the following could <i>possibly</i> be true? List the letters in the box. (4 points)					
	A. The planes intersect in a line.					
	B. The planes are orthogonal to each other.					
	C. The planes are parallel to each other.					
	D. The planes are equal to each other.					
	The possibly true statements are					
3.	(a) Let $\mathbf{v} = \langle 1, 0, 2 \rangle$, and let $\mathbf{w} = \langle -1, 3, 0 \rangle$. Find $\operatorname{proj}_{\mathbf{v}} \mathbf{w}$, the vector projection of \mathbf{w} onto \mathbf{v} .	(3 points)				
	$\operatorname{proj}_{\mathbf{v}}\mathbf{w} = \left\langle \right\rangle$,	,				
	(b) Let P be the plane with equation $x + 2z = 0$. Find the distance from the point $(-1,3)$ (2 points)	0) to the plane P .				
	The distance is					



$$\theta =$$

5. Find the tangent plane to the surface $z = x^2 e^y$ at the point (3,0,9). **(5 points)**

Equation:
$$z = \begin{bmatrix} x + y \end{bmatrix}$$

6. Suppose f is a differentiable function of x and y with continuous second partial derivatives. Let $g(u, v) = f(e^u + (v + 2)^2, e^{3u} + v^3)$. You are given the following table of values.

	g	f	f_x	f_y	f_{xx}	f_{xy}
(0,0)	5	1	4	6	4	5
(5,1)	0	4	7	2	1	9

(a) Use the table to calculate $g_u(0,0)$, if possible. Otherwise, write "Insufficient information". (4 points)

$$g_u(0,0) =$$

(b) Use the table to calculate $f_{yx}(5,1)$, if possible. Otherwise, write "Insufficient information". (1 point)

$$f_{yx}(5,1) =$$

7. The picture below is the graph of a function z = f(x, y) illustrated relative to the coordinate axes. Pick the correct function f. (2 **points**)

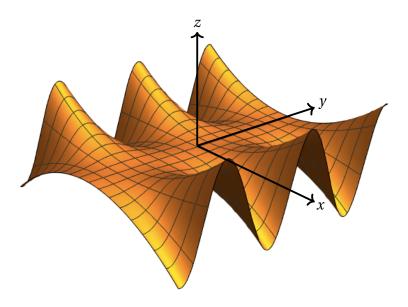
A.
$$f(x, y) = x^2 + y^2 - 2$$

B.
$$f(x, y) = x^2 \cos(y)$$

C.
$$f(x, y) = x^2 \sin(y)$$

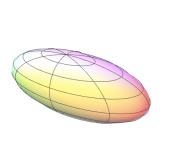
$$\mathbf{D.} \ f(x,y) = xye^{xy}$$

E.
$$f(x, y) = \sin(x)\cos(y)$$

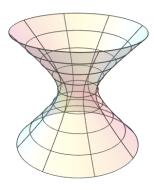


The correct function is

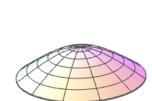
8. Let $f(x, y, z) = ax^2 + by^2 + cz^2$ for some real numbers a, b, and c. Which of the following *could not* be a level set of f? Circle the letter corresponding to yours answer. (2 **points**)



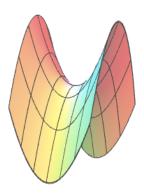
A. Ellipsoid



B. Hyperboloid of 1 sheet



C. Hyperboloid of 2 sheets



D. Hyperbolic paraboloid

9. Let f be a function of x and y. Consider the fo	llowing statements.
---	---------------------

A. $f(x,y) \rightarrow 0$ as $(x,y) \rightarrow (0,0)$ along every straight line through (0,0), but $\lim_{(x,y)\rightarrow(0,0)} f(x,y)$ does not exist.

B. $f(x, y) \to 0$ as $(x, y) \to (0, 0)$ along the lines x = 0 and y = 0, but $\lim_{(x, y) \to (0, 0)} f(x, y)$ does not exist.

C. $f(x, y) \to 0$ as $(x, y) \to (0, 0)$ along the lines x = 0 and y = 0, and $\lim_{(x, y) \to (0, 0)} f(x, y) = 1$.

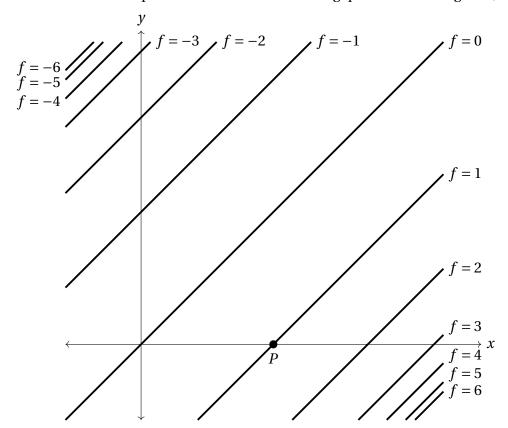
Which statements could *possibly* be true?

List the letter(s) for those statement(s) in the box, or write "none". (3 points)

The possibly true statements are	
----------------------------------	--

10. A contour map for a function f of x and y and a point P in the plane are given below.

Use the contour map to determine if the following quantities are negative, zero, or positive. (2 points each)



(a) $f_x(P)$ is	negative	zero	positive	

(b)
$$f_{xx}(P)$$
 is negative zero positive

(c)
$$f_{xy}(P)$$
 is negative zero positive