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SOLUTIONS

(1) Solution.
(a) v = 〈2, 2, 3〉 − 〈0, 1, 2〉 = 〈2, 1, 1〉 and w = 〈−1, 3, 4〉 − 〈0, 1, 2〉 = 〈−1, 2, 2〉.
(b) We may take the cross product of any two vectors on the plane. For example, we may take the

cross product of a and b to get

n = a× b =

∣∣∣∣∣∣
i j k
1 2 0
3 6 1

∣∣∣∣∣∣ =

∣∣∣∣2 0
6 1

∣∣∣∣ i− ∣∣∣∣1 0
3 1

∣∣∣∣ j +

∣∣∣∣1 2
3 6

∣∣∣∣k = 〈2,−1, 0〉.

(c) The vector equation for the plane is u ·
(
〈x, y, z〉 − P

)
= 0. Writing this all out, we get

〈3, 2, 4〉 ·
〈
x− 2, y − (−1), z − 1

〉
= 3(x− 2) + 2(y + 1) + 4(z − 1) = 0.

Distributing and simplifying gives the equation 3x+ 2y + 4z = 8.
(d) The absolute value (magnitude) of the cross product of v and w measures the area of the

parallelogram with sides v and w. �

(2) Solution.
(a) To find the midpoint M , we can “average” P and Q to get

M =
1

2
(P +Q) =

(1 + 3

2
,

3− 3

2
,
−2 + 4

2

)
= (2, 0, 1).

We can also add 1
2 of the vector ~PQ = Q− P =〉2,−6, 6〉 to P to get

M = (1, 3, 2) +
1

2
(2,−6, 6) = (2, 0, 1).

(b) We have r(t) = 〈1, 0, 2〉 + t〈2,−1, 1〉 = 〈1 + 2t,−t, 2 + t〉, so each point x, y, z on L looks like
x = 1 + 2t, y = −t, z = 2 + t for some t. Substitute these for x y and z into the equation of the
plane to get an equation

3(1 + 2t)− 2(−t) + (2 + t) = 14.

Solving this equation to t, we get t = 1. Plugging this value of t back into r(t) gives us the
point r(1) = (3,−1, 3), which is on both the line L and the plane. �

(3) Solution. Let’s try taking the limit along two paths through the origin. We first approach along
the y-axis: set x = 0 to get f(0, y) = 0

y2 = 0 and take the limit as y goes to zero to get

lim
y→0

f(0, y) = lim
y→0

0 = 0.

Now let’s go along the path x = y: set x = y to get f(y, y) = y2−y3

2y2 = 1
2 (1 − y) and take the limit

as y goes to zero to get

lim
y→0

f(y, y) = lim
y→0

1

2
(1− y) =

1

2
.

Since these limits are not equal, the limit does not exist. �

(4) Solution.
(a) We have −x2 − y2 = −(x2 + y2), so this function is an upside-down paraboloid. For each c,

we have that −x2 − y2 = c, so for each c < 0, this equation gives us a circle with radius
√
−c.

Thus, the level sets are all circles.
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(b) For each c, the equation cos(x + y) = c only has a solution if −1 ≤ c ≤ 1. In this case, we
have that x+ y = cos−1(c) + 2πk where k can be any integer (i.e. k = . . . ,−2,−1, 0, 1, 2, 3, . . .).
Solving this for y, we get that y = −x+cos−1(c)+2πk. All that really matters for our purposes
is that cos−1(c) + 2πk is some number for each k, so each level set is a collection of lines with
slope −1.

(c) As x gets big, the factor e−x
2

gets really close to zero really quickly, so the only place we’ll see
anything is close to the y-axis (where x = 0). Along this axis, we get the function y2 and as we

move away from this axis (as x gets bigger) we get the function e−x
2

y2 where 0 < e−x
2

< 1. �

(5) Solution.

(a) ∂f
∂x = 3x2 + 2y + 0 = 3x2 + 2y and ∂f

∂y = 0 + 2x+ 1 = 2x+ 1.

(b) f decreases as x increases and f increases as x decreases, so fx(a, b) < 0. f decreases as y
increases and as y decreases, so fy(a, b) = 0. If one looks at concavity in the x direction, we see
that f is concave up, so fxx(a, b) > 0. Another way to see this is to note that as x increases, f
decreases more and more slowly.

(c) We first estimate fx(2, 1). Starting at (2, 1), we have to go right to the point (2.8, 1) to go from
the level set f = 0 to the level set f = 1. We have to go left to the point (1.4, 1) to go from
the level set f = 0 to the level set f = −1. Thus, the change in f between these two points is
2 and the change in x is about 2.8− 1.4 = 1.4. This gives us that

fx(2, 1) ≈ ∆f

∆x
=

2

1.4
≈ 1.43 ≈ 1.5.

Likewise, we have to go up to the point (2, 1.5) to go from the level set f = 0 to the level set
f = −1. We have to go down to the point (2, 0.5) to go from the level set f = 0 to the level
set f = 1. Thus, the change in f between these two points is −2 and the change in 5 is about
1.5− 0.5 = 1. This gives us that

fy(2, 1) ≈ ∆f

∆y
=
−2

1
= −2. �

(6) Solution. First, we calculate the tangent plane to f at (1, 2). This is the plane

z = f(1, 2) +
∂f

∂x
(1, 2)(x− 1) +

∂f

∂y
(1, 2)(y − 2) = 5− 2(x− 1) + 3(y − 2).

In order to approximate f(1.1, 1.9), we plug this point into the equation of the tangent plane to get

f(1.1, 1.9) ≈ 5− 2(1.1− 1) + 3(1.9− 2) = 5− 0.2− 0.3 = 4.5. �

(7) Solution.
(a)

∂F

∂s
=

∂f

∂x

(
x(s, t), y(s, t)

)∂x
∂s

(s, t) +
∂f

∂y

(
x(s, t), y(s, t)

)∂y
∂s

(s, t).

(b) We have x(2, 1) = 5 and y(2, 1) = 3. We have ∂x
∂s = 2, so ∂x

∂s (2, 1) = 2. We also have ∂y
∂s = 2st

so ∂x
∂s (2, 1) = 4. Substituting all of this into the equation from part (a), we have

∂F

∂s
(2, 1) =

∂f

∂x

(
x(2, 1), y(2, 1)

)∂x
∂s

(2, 1) +
∂f

∂y

(
x(2, 1), y(2, 1)

)∂y
∂s

(2, 1)

=
∂f

∂x
(5, 3) · 2 +

∂f

∂y
(5, 3) · 4 = 3 · 2 + 5 · 4 = 26. �
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(8) Extra Credit Solution. For h = (x, y), we have that |h| =
√
x2 + y2. In particular, |x| < |h| and

|y| < |h|. Now we have E(h) = 2x+ y2, we have

|E(h)| = |2x+ y2| ≤ 2|x|+ |y|2 ≤ 2|h|+ |h|2.
If |h| < 1, then |h|2 < |h| and so |E(h)| < 3|h|. Therefore, if we want |E(h)| to be less than
0.01 = 1

100 , we should choose |h| such that 3|h| < 1
100 . For example, we can choose δ = 1

300 . �
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