
1. Give a vector v perpendicular to the plane that contains the line x = 1 + t, y = 2 − 3t, z = 2 + 4t
and the line x = 2, y = −1 + 2t, z = 6− t. (5 points)

A vector pointing along the first line is a = 〈1,−3, 4〉

A vector pointing along the second line is b = 〈0, 2,−1〉

A normal vector to the plane containing both lines is then given by their cross product:

v = a× b =

∣∣∣∣∣∣
i j k
1 −3 4
0 2 −1

∣∣∣∣∣∣ =

∣∣∣∣−3 4
2 −1

∣∣∣∣ i− ∣∣∣∣1 4
0 −1

∣∣∣∣ j +

∣∣∣∣1 −3
0 2

∣∣∣∣k = −5i + 1j + 2k

So v = 〈−5, 1, 2〉.

2. Find the angle θ between the planes x = z + 8 and 2y = 1− 2x+ z. (5 points)

The angle θ between the two planes is equal to the angle between their normal vectors. Rewriting
the equations of the planes as x − z = 8 and 2x + 2y − z = 1, we see that their respective normal
vectors are n1 = 〈1, 0,−1〉 and n2 = 〈2, 2,−1〉. Then θ satisfies

cos(θ) =
n1 · n2

|n1||n2|
=

1(2) + 0(2) + (−1)(−1)√
12 + 02 + (−1)2

√
22 + 22 + (−1)2

=
2 + 1√

2
√

9
=

3

3
√

2
=

1√
2

=

√
2

2

It follows that θ = cos−1
(√2

2

)
=
π

4
(this is equivalent to 45◦).
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3. Consider the points in the plane shown at right:

(a) Circle the vector that is equal to 2
−−→
DE −

−→
CA.

(2 points)

(b) Circle the vector that is equal to

proj−→
CA

−−→
DE.

(2 points)

For part (a), we can represent 2
−−→
DE as

−−→
CE and −

−→
CA as

−→
AC. Then 2

−−→
DE−

−→
CA =

−→
AE. Of the options

given, the only one that has the same magnitude and goes in the same direction as
−→
AE is

−−→
DG.

For part (b), proj−→
CA

−−→
DE is the component of

−−→
DE along

−→
CA, that is, the scalar multiple of

−→
CA closest

to
−−→
DE. After drawing

−→
CA and

−−→
DE, we can move

−→
CA over so that it emanates from point D in order

to better find the projection. Next, we draw a line from the point E to the copy of
−→
CA so that it

forms a right angle, which will be at point B. Then
−−→
DB, portion of the copy of

−→
CA up to B, gives

us proj−→
CA

−−→
DE.
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4. Suppose S is a quadric surface whose intersections with the following three planes are:

(a) Mark the box next to the picture of the portion of S where −2 ≤ x ≤ 2, −2 ≤ y ≤ 2, and
−2 ≤ z ≤ 2:
(2 points)

Only the first and third pictures match view from the plane x = 1, that is, a circle in y and z.
For the first picture, at z = 1, we would see a hyperbola in x and y, not a × shape, because
when we freeze z = 1, there is no path from the right half of the figure to the left. Only the
third picture matches all three of the plane intersections given.

(b) Circle the equation that S satisfies:

(2 points)
We know from the plane intersections that if we set x = 1, we should get a circle in y and z.
When we set x = 1 in the first choice, we get 1 + y2− z = 0 =⇒ 1 = z− y2, and is not a circle;
when we set x = 1 in the second choice, we get y2 + z2− 1 = 1 =⇒ y2 + z2 = 2, and is a circle;
and when we set x = 1 in the third choice, we get y2 + z2 = 1, which is also a circle. Then we
can rule out the first choice. Next, if we set z = 1, we should get two lines in x and y. When we
set z = 1 in the second choice, we get y2 + 1 − x2 = 1 =⇒ y2 = x2, and this forms two lines,
y = x and y = −x. When we set z = 1 in the third choice, we get y2 + 1 = x2 =⇒ x2− y2 = 1,
which is a hyperbola and not two lines, so we may rule out the third choice as well. Then
the answer must be the second choice. Alternatively, the second choice is the only one that
gives the equation of a hyperboloid of one sheet, matching the rightmost picture in part (a).
Alternatively, the first and third choices go through the point (0, 0, 0), and we can see in the
picture from part (a) that S does not.
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5. Consider the limit lim
(x,y)→(0,0)

y4 cos2(x)

x4 + y4
. Does this limit exist? If so, what is its value? Justify your

answer. (5 points)

Set f(x, y) =
y4 cos2(x)

x4 + y4
. Then f is not defined at (0, 0), since we get the indeterminate form 0

0
.

Instead, we approach (0, 0) along different paths. The most basic choices of path are moving along
the x-axis (where y = 0) and moving along the y-axis (where x = 0). Along the x-axis, we have

f(x, 0) =
(04) cos2(x)

x4 + 04
=

0

x4
= 0 for x 6= 0, so the limit of the function as we approach along the

x-axis is 0. Along the y-axis, we have f(0, y) =
y4 cos2(0)

04 + y4
=
y4

y4
= 1 for y 6= 0, so the limit of the

function as we approach along the y-axis is 1. Since f approaches different values depending on how
we approach (0, 0), that is, how (x, y)→ (0, 0), we conclude that the limit does not exist.

(If we had not been able to find different paths that give different limits, we might try proving that
the limit exists using the ε, δ definition or polar coordinates.)

6. Find the equation of the tangent plane to the graph of g at the point (1, 0, 4) basd on the data in
the table at right. (4 points)

The general formula for the tangent plane to a function f at a point (a, b) is given by

z − f(a, b) =
∂f

∂x
(a, b)(x− a) +

∂f

∂y
(a, b)(y − b)

For our function g, we see from the table that g(1, 0) = 4, ∂g
∂x

(1, 0) = gx(1, 0) = 3, and ∂g
∂y

(1, 0) =

gy(1, 0) = −1. Then the equation for the tangent plane to the graph of g at the point (1, 0, 4) is
given by

z − 4 = 3(x− 1) + (−1)(y − 0)

=⇒ z − 4 = 3x− 3− y
=⇒ −4 + 3 = 3x− y − z
=⇒ −1 = 3x+ (−1)y + (−1)z
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7. For each function label its graph from among the options below: (2 points each)
(A) −y2 + sin(x) (B)

√
x2 + y2

For (A), if we set x = c for c a constant, we get z = −y2 + sin(c) where sin(c) is a constant, so in
one direction, we should have a downward-facing parabola. If we set y = d for d a constant, we get
z = −d2 + sin(x) where −d2 is a constant, so in the other direction, we should have a sine function.
The upper left-hand graph is the only one that satisfies both of these.

For (B), if we set x = c for c a general constant, we get z =
√
c2 + y2 ↔ z2− yz = c2, which forms a

hyperbola in y and z. This matches both the upper right-hand graph and the lower left-hand graph.
If we set x = 0 specifically, we get z =

√
02 + y2, so z = y or z = −y. Even without having the axes

labelled, this general shape only occurs in the lower left-hand graph. Alternatively, z =
√
x2 + y2

is the positive half of z2 = x2 + y2, which is the equation of a double cone, and the lower left-hand
graph is the only one that looks like half of a double cone.
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8. Consider the countour plot of f(x, y) shown at
right, where the dotted grid is made of unit
squares.

(a) At the point B, the derivative
∂f

∂x
is:

(1 point)

(b) Estimate the partial derivatives
∂f

∂x
and

∂f

∂y
at the point A. For each, circle the

number below that is closest to your esti-
mate.
(3 points)

For part (a), recall that ∂f
∂x

at B is the rate at which f changes if we start at B and vary x (while
holding y constant). If we move a small amount to the left or to the right from point B, we’re still
on (or very nearly on) the contour where f = 3, so f does not change if we start at B and vary x.
Then ∂f

∂x
= 0.

For part (b), consider ∂f
∂x

at point A first. If we hold y constant and vary x, we immediately come

off the contour f = 0, so we expect ∂f
∂x
6= 0. To find an approximate value, we consider how much

we need to vary x in order to reach a new contour. To get to the contour at f = −1, we need to
move about two units to the right, so in order to decrease f by 1, we need to increase x by 2, which
suggests ∂f

∂x
= −1

2
= −0.5. To get to the contour at f = 1, we need to move about two units to the

left, so in order to increase f by 1, we need to decrease x by 2, which confirms ∂f
∂x

= 1
−2 = −0.5.

Now we consider ∂f
∂y

at point A. If we hold x constant and vary y, we immediately come off the

contour f = 0, so we expect ∂f
∂y
6= 0. To find an approximate value, we consider how much we need

to vary y in order to reach a new contour. To get to the contour at f = −1, we need to move
about 2

3
of a unit down, so in order to decrease f by 1, we need to decrease y by 2

3
, which suggests

∂f
∂y

= −1
− 2

3

= 3
2

= 1.5. To get to the contour at f = 1, we need to move about 2
3

of a unit up, so in

order to increase f by 1, we need to increase y by 2
3
, which confirms ∂f

∂y
= 1

2
3

= 3
2

= 1.5.
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9. Suppose the temperature, measured in ◦C, on a tabletop is given by F (x, y) = 40− x2 − y, where x
and y have units of centimeters.

(a) Mark the box below the contour plot that best matches the function F . (1 point)

(b) Suppose a small bug positioned at (3, 1) is travelling so that its x-coordinate is decreasing at
a rate of 1 cm/s and its y-coordinate is increasing at a rate of 2cm/s. Use the Chain Rule to
calculate the rate at which the temperature is changing from the bug’s perspective. (5 points)

For part (a), each contour represents a curve given when we fix F (x, y) = C for C some constant, so
each contour is of the form C = 40 − x2 − y, which rearranges to y = −x2 + (40 − C). Then every
contour should have the shape of a vertical, downward-opening parabola, which only matches the
leftmost plot (the middle plot has circles instead of parabolas, and the rightmost plot has horizontal
parabolas). Alternatively, x2 tends to change faster than y1, so we expect to see contours bunching
more closely together in the x-direction than they do in the y-direction, which again only matches
the leftmost plot.

For part (b), let the bug’s position be given by (x(t), y(t)), where (x(0), y(0)) = (3, 1). The rate at
which the temperature is changing from the bug’s perspective at time t = 0 is given by dF

dt
(0), and

by the Chain Rule, dF
dt

= ∂F
∂x

dx
dt

+ ∂F
∂y

dy
dt

. Since F (x, y) = 40 − x2 − y, we know that ∂F
∂x

= −2x and
∂F
∂y

= −1, and it is given that the bug’s x-coordinate is decreasing at a rate of 1 cm/s, so dx
dt

(0) = −1,

and its y-coordinate is increasing at a rate of 2cm/s, so dy
dt

(0) = 2.

Then
dF

dt
(0) =

∂F

∂x
(x(0), y(0))

dx

dt
(0) +

∂F

∂y
(x(0), y(0))

dy

dt
(0)

=
∂F

∂x

(
3, 1
)

(−1) +
∂F

∂y

(
3, 1
)

(2)

= (−2)3(−1) + (−1)(2)

= 6− 2

= 4

So from the bug’s perspective, at the point (3, 1), the temperature is changing at a rate of 4◦ C per
second.
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