1. (6 points) Find the points on the curve $x^2+4y^2=8$ where the function $f(x,y)=-x+$ attains its maximum max and minimum min , and say what max and min are.	-2 <i>y</i>

$$max =$$
 at the point(s)

$$min =$$
 at the point(s)

2. (3 points) Let $f: \mathbb{R}^2 \to \mathbb{R}$ be a function with continuous second order partial derivatives at every point. Assume that f(0,0) = 1, $f_x(0,0) = 0$, $f_y(0,0) = 0$, $f_{xx}(0,0) = 5$, $f_{xy}(0,0) = 2$, $f_{yx}(0,0) = 2$, $f_{yy}(0,0) = -1$. Determine whether the point (0,0) is critical and, if so, say whether it is a local minimum, a local maximum, or a saddle point for f. Circle your answer.

Not a critical point

A local min

A local max

A saddle

We do not have enough information

3. (3 points) Let D be the set of points (x, y) in \mathbb{R}^2 such that $1 < x^2 + y^2 < 4$. Which of the following are properties of D? Circle all that apply.

open

connected

simply connected

$$f(x, y, z) =$$

5. (6 points) Consider the vector field $\mathbf{F}(x,y) = \langle e^{(x^2)}, \sin(y) \rangle$. Is \mathbf{F} conservative? Circle the correct response

Yes No We do not have enough information.

and justify your answer.

- 6. (7 points) Consider the oriented curve C parameterized by $\mathbf{r}(t) = \langle \cos(t), t \rangle, t \in [0, \pi].$
 - (a) Circle the picture of C.

(b) Calculate the integral $\int_C \langle 1, y^2 + x \rangle \cdot d\mathbf{r}$.

$$\int_C \langle 1, y^2 + x \rangle \cdot d\mathbf{r} =$$

7. (7 points) Consider the function $f: \mathbb{R}^2 \to \mathbb{R}$ whose contour diagram is shown below, as well as the curves C_1 , C_2 , the point A, and the unit vector \mathbf{v} . For each part circle the best answer

(b) The value of $\int_{C_1} f ds$ is

-14 -4 4 14 24

(c) The sign of $\int_{C_2} \nabla f \cdot d\mathbf{r}$ is

negative zero positive