1	Consider the vector field $\mathbf{F}(x, y) =$	$/$ $11 \perp 0^{X}$	v - cos v	\ Find a function	f(v	v) such that $\mathbf{F} = \nabla f$. (2	nointe)
1.	Consider the vector field $\mathbf{F}(x, y) =$	$(y+e^{-x})$	$x - \cos y$). Find a function	J(X,	y) such that $\mathbf{F} = \mathbf{v}_{I}$. (2	pomus)

$$f(x, y) =$$

- **2.** For each of the given regions D in \mathbb{R}^2 below, circle the phrase that makes the sentence true. (1 point each)
 - (a) A continuous function on $D = \{x^2 + 4y^2 \ge 5\}$

must might or might not must not have an absolute maximum.

(c) A continuous function on $D = \{x^2 + 4y^2 < 5\}$ must might or might not must not

have an absolute maximum.

(b) A continuous function on $D = \{x^2 + 4y^2 \le 5\}$ must might or might not must not

have an absolute maximum.

- (d) A continuous function on $D = \{x^2 + 4y^2 = 5\}$ must might or might not must not have an absolute maximum.
- **3.** Suppose f(x, y) is a differentiable function with continuous second order partial derivatives and values given by the table below.

(x, y)	f(x, y)	$f_x(x,y)$	$f_y(x,y)$	$f_{xx}(x,y)$	$f_{yy}(x,y)$	$f_{xy}(x,y)$
(-1,0)	4	0	0	-2	-3	2
(0, 1)	0	0	1	1	2	0
(2, 1)	-2	0	0	1	1	3

For each of the given points, circle the best description of the point. (1 point each)

(-1,0)	not critical	local minimum	local maximum	saddle point	undetermined
(0,1)	not critical	local minimum	local maximum	saddle point	undetermined
(2,1)	not critical	local minimum	local maximum	saddle point	undetermined

- **5.** The contour map of a differentiable function g is shown at right. For each part, circle the best answer. (2 points each)
 - (a) The directional derivative $D_{\mathbf{v}}g(P)$ is:

positive negative zero

(b) The vector **u** is parallel to $\nabla g(Q)$.

True False

(c) Estimate $\int_C g(x, y) ds$.

-12 -9 -6 -3 0 3 6 9 12

(d) Find $\int_C \nabla g \cdot d\mathbf{r}$: $-12 -9 -6 -3 \ 0 \ 3 \ 6 \ 9 \ 12$

6. Consider the curve C in \mathbb{R}^3 whose projections onto the xy, xz and yz planes are:

Check the box below the three-dimensional plot of *C*. (2 points)

Z 0.5

7. Let <i>C</i> be the curve in three-dimensional space parametrized by $\mathbf{r}(t) = \langle 2\cos t, t \rangle$	$2\sin t$, t for $-\pi \le t \le \pi$.
(a) Find the mass of a thin wire in the shape of <i>C</i> , if the density function is $\rho(x)$	(x, y, z) = x + z + 10. (5 points)
	Mass =
(b) Suppose that a particle moves along C starting at $\mathbf{r}(-\pi) = (-2, 0, -\pi)$ and er the work done on the particle by the force $\mathbf{F}(x, y, z) = y\mathbf{i} - x\mathbf{j}$. (5 points)	ading at $\mathbf{r}(\pi) = (-2, 0, \pi)$. Find
(b) Suppose that a particle moves along C starting at $\mathbf{r}(-\pi) = (-2, 0, -\pi)$ and er the work done on the particle by the force $\mathbf{F}(x, y, z) = y\mathbf{i} - x\mathbf{j}$. (5 points)	ading at $\mathbf{r}(\pi) = (-2, 0, \pi)$. Find
	ading at $\mathbf{r}(\pi) = (-2, 0, \pi)$. Find
	ading at $\mathbf{r}(\pi) = (-2, 0, \pi)$. Find
	ading at $\mathbf{r}(\pi) = (-2, 0, \pi)$. Find
	ading at $\mathbf{r}(\pi) = (-2, 0, \pi)$. Find
	ading at $\mathbf{r}(\pi) = (-2, 0, \pi)$. Find
	ading at $\mathbf{r}(\pi) = (-2, 0, \pi)$. Find
	ading at $\mathbf{r}(\pi) = (-2, 0, \pi)$. Find
	ading at $\mathbf{r}(\pi) = (-2, 0, \pi)$. Find
	ading at $\mathbf{r}(\pi) = (-2, 0, \pi)$. Find
	ading at $\mathbf{r}(\pi) = (-2, 0, \pi)$. Find
	ading at $\mathbf{r}(\pi) = (-2, 0, \pi)$. Find
	ading at $\mathbf{r}(\pi) = (-2, 0, \pi)$. Find

Equation:
$$x + y + z = z$$

(b) Let S_1 be as in the previous part, and let S_2 be the surface defined by $y^2 + \frac{z^2}{4} = 1$ (a cylinder over an ellipse). Find a vector function $\mathbf{r}(t)$ that parametrizes the curve that is the intersection of the surfaces S_1 and S_2 . Specify the range of the parameter values so that the function traces the curve exactly once. **(4 points)**

$$\mathbf{r}(t) = \langle$$
, , \rangle for $\leq t \leq$

9. Check the box below the picture of the curve $\mathbf{r}(t) = \langle \sin t, \cos^2 t \rangle$, $0 \le t \le 2\pi$. (2 points)

10. A vector field **G** is plotted at right.

(a) Circle the formula for **G**. (1 point)

$$x\mathbf{i} + y\mathbf{j}$$
 $-x\mathbf{i} - \mathbf{j}$ $-\mathbf{i} - x\mathbf{j}$ $y\mathbf{i} - \mathbf{j}$

(b) **G** is conservative. (1 point)

(0,1)

11. The region D defined by $\{0.03 < x^2 + y^2 < 1.3\}$ is shown at right. Within this region are three curves A, B, C. Each curve starts at (0,-1) and ends at (0,1). Suppose that $\mathbf{F}(x,y) = P(x,y)\mathbf{i} + Q(x,y)\mathbf{j}$ is a differentiable vector field defined on D with the properties

$$\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$$
, $\int_A \mathbf{F} \cdot d\mathbf{r} = -1$, and $\int_C \mathbf{F} \cdot d\mathbf{r} = 2$.

(a) The region D is simply connected. (1 point)

(b) F is conservative. (1 point)

