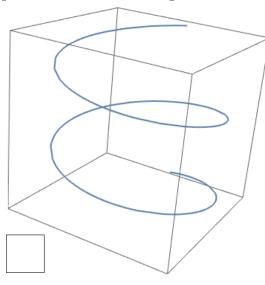
1.	Find the maximum and minimum value of the function $f(x, y, z) = 3x + y$ on the ellipsoid $3x^2 + 2y^2 + z^2$ (5 points)	= 14.
	Maximum value =	
	Minimum value =	

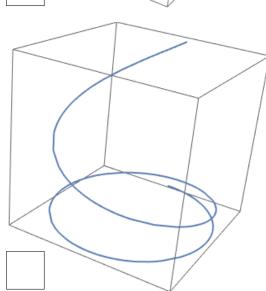
2.	Find the length of the curve C	parameterized by $\mathbf{r}(t) = \langle 2t, \cos t, \sin t \rangle$ for $0 \le t \le 5\pi$.	(4 points)

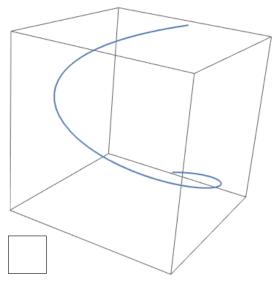
3. Parameterize the curve given by the intersection of the paraboloid $z = 4x^2 + y^2$ and the parabolic cylinder $y = x^2$. Specify the domain (the values of the parameter t) so that the function traces the curve exactly once. **(4 points)**

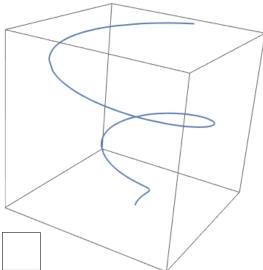
$$\mathbf{r}(t) = \boxed{\langle} , , \qquad , \qquad \qquad \rangle \qquad \text{for } t \text{ in}$$

4. Let *C* be the curve parameterized by $\mathbf{r}(t) = \langle \sin(t^2), \cos(t^2), t^2 \rangle$ for $0 \le t \le 2\sqrt{\pi}$. Check the box below the picture of the curve *C*. **(2 points)**









5. Consider the following domains (subsets) in \mathbb{R}^2 . For each, circle the characteristics that accurately describe the set; **circle zero, one, or both options**, as appropriate. **(3 points)**

(a)
$$D_1 = \{(x, y) \mid y^2 \ge x^2 + 1\}.$$

 D_1 is simply connected closed

(b)
$$D_2 = \{(x, y) \mid 1 < x^2 + y^2 \le 2\}.$$

 D_2 is open bounded

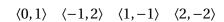
(c)
$$D_3 = \{(x, y) \mid (x, y) \neq (0, 0)\}.$$

$$D_3$$
 is simply connected bounded

6. The contour map of a differentiable function f(x, y) is shown below.

Circle the *best response* for each of parts (a) - (d) below.

(a) **(2 points)** $\nabla f(-1,0) =$



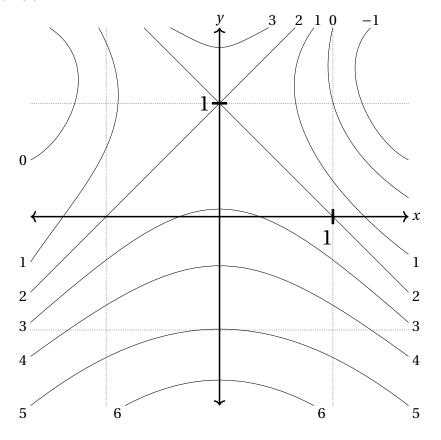
$$\langle 1, 0 \rangle$$
 $\langle 1, -2 \rangle$ $\langle 0, -2 \rangle$ $\langle -2, 2 \rangle$

(b) **(2 points)** The maximum rate of change of f at (0, -1) is

1	2	3	4	5	6	
-	_	•	-	•	•	

(c) (2 points) $D_{\left\langle \frac{-1}{\sqrt{2}}, \frac{1}{\sqrt{2}} \right\rangle} f(1,0) =$

$$-2$$
 -1 0 1 2



(d) (2 points) If C is the straight line segment from (0,-1) to (1,0), then

$$\frac{1}{\sqrt{2}} \int_C f \, ds = \begin{array}{c|ccccc} -5 & -\frac{7}{2} & -\frac{3}{2} & 0 & \frac{1}{2} & 2 & \frac{7}{2} & 5 \end{array}$$

Scratch Space

7. Three continuous vector fields, \mathbf{F} , \mathbf{G} , \mathbf{H} on the plane are plotted below in the region with -1 < x < 1 and -1 < y < 1.

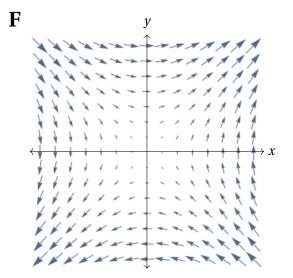
Circle the best response for each of the following.

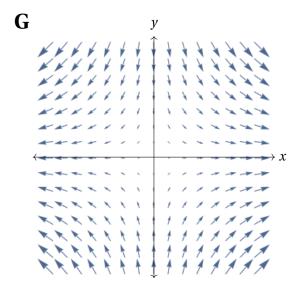
(a) **(2 points)** Which vector field is ∇f , where f(x, y) = xy?

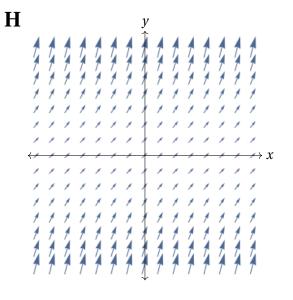
(b) **(4 points)** A particle moves along a straight line from (-1,-1) to (1,1). If the vector fields represent force fields, then:

The work done by **G** on the particle is...

The work done by **H** on the particle is...







8. Consider the vector field $\mathbf{F}(x, y) =$	$\langle \frac{1}{v}e^{\frac{x}{y}}, -\frac{x}{v^2}e^{\frac{x}{y}} + 2y \rangle.$	Let C be the straight line se	gment from $P = (1, 1)$ to
Q = (2,2) parametrized by	$\mathbf{r}(t) = \langle t, t \rangle, \text{for}$		

(a) Use the definition of the line integral of a vector field along a curve to compute $\int_C \mathbf{F} \cdot d\mathbf{r}$ directly, using the above parametrization. (**No credit will be given for computations using any other method.**) (5 points)

$$\int_C \mathbf{F} \cdot d\mathbf{r} =$$

(b) The vector field **F** is conservative. Find a function f such that $\nabla f = \mathbf{F}$. (2 points)

$$f(x, y) =$$

(c) Use your work from part (b) to check your result from part (a). (Show your work and explain your method. Note: If you were not able to solve part (a) or part (b), explain how you *could* check your answer assuming that you had found a number *N* in part (a) and a function *f* in part (b).) **(2 points)**

9. Suppose that f(x, y) is a differentiable function with continuous second order partial derivatives and values given by the table below. (**5 points**)

(x, y)	f(x, y)	$f_{x}(x,y)$	$f_y(x,y)$	$f_{xx}(x,y)$	$f_{yy}(x,y)$	$f_{xy}(x,y)$
(2, 1)	0	0	-1	2	3	1
(0, 1)	-1	0	0	-2	-2	-2
(1,0)	2	0	0	2	1	1

For each of the given points, circle the best description of the point.

(2,1)	not critical	local minimum	local maximum	saddle point	undetermined
(0,1)	not critical	local minimum	local maximum	saddle point	undetermined
(1,0)	not critical	local minimum	local maximum	saddle point	undetermined

- **10.** Let D be the set of all points (x, y) in \mathbb{R}^2 except for (0, 0). In each part below, indicate whether a continuous vector field with domain D and the property described is *necessarily conservative* or *not necessarily conservative*. (If the vector field is never conservative, circle *not necessarily conservative*.) (4 points)
 - (a) $\mathbf{F}_1(x, y) = \langle -y, x \rangle$.

\mathbf{F}_1 is	necessarily	not necessarily
1 1 13	conservative	conservative

(b) \mathbf{F}_2 has the path independence property; that is, the line integral $\int_C \mathbf{F}_2 \cdot d\mathbf{r}$ is independent of path in D.

F ₄ is	necessarily conservative	not necessarily conservative

(c) $\mathbf{F}_3 = \langle P, Q \rangle$ where $\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$ over D.

\mathbf{F}_3 is	necessarily	not necessarily
13 15	conservative	conservative

(d) \mathbf{F}_4 has the property that for the unit circle $C_1 = \{x^2 + y^2 = 1\}$, $\int_{C_1} \mathbf{F}_4 \cdot d\mathbf{r} = 0$.

\mathbf{F}_4 is	necessarily	not necessarily
1410	conservative	conservative