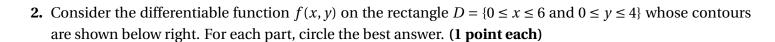
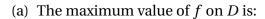
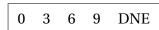
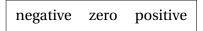
1. Consider th	e function $f \colon \mathbb{R}^2 \to \mathbb{R}^2$	\mathbb{R} given by $f(x, y) =$	$= x - y$. Let <i>C</i> be the circle $x^2 + y$	$y^2 = 2.$
(a) Use Lagr	ange multipliers to	o find the absolute m	hax and min of f on C . (5 po)	ints)
_			-	
A1 14			1:1:-1:	
Absolute	e max of f on C is		which occurs at the point(s)	
Absolut	e min of f on C is		which occurs at the point(s)	
(b) Find the	absolute max of f	on \mathbb{R}^2 if it exists. (1	point)	
			Absolute $\max \text{ of } f$ on	\mathbb{R}^2 is
				L



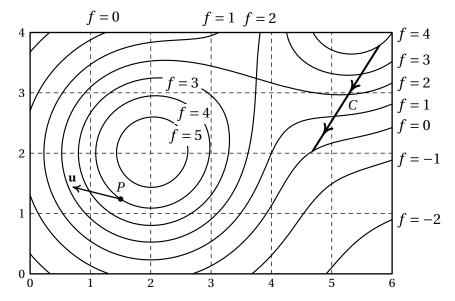




(b) The value of $D_{\mathbf{u}}f(P)$ is:



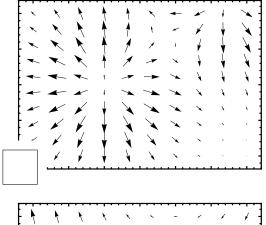
(c) The number of critical points of *f* in *D* which are saddles is:

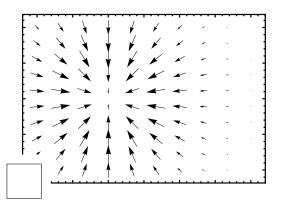


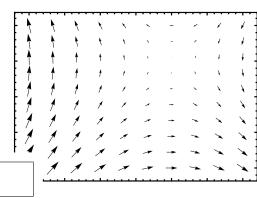
(e) The integral
$$\int_C f \, ds$$
 is:

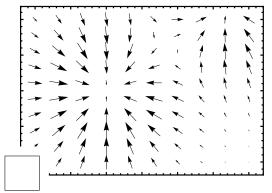
(f) The integral
$$\int_C \nabla f \cdot dr$$
 is:

(h) Mark the plot below of the gradient vector field ∇f .









- **3.** Let *C* be the curve in \mathbb{R}^3 that is the intersection between the circular cylinder $x^2 + (z-1)^2 = 4$ and the plane x + y + z = 1.
 - (a) Find a vector function $\mathbf{r}(t)$ that parameterizes C, traversing the whole curve exactly once. Be sure to specify the domain of your parameterization. (4 **points**)

$$\mathbf{r}(t) = \boxed{\left\langle \right.} \qquad , \qquad \left. \right\rangle \boxed{\text{for}} \qquad \leq t \leq$$

(b) The vector $\mathbf{v} = \langle 1, 2, 3 \rangle$ is tangent to C at some point:

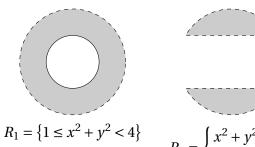
t: true false (1 point)

Scratch Space

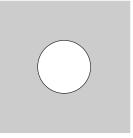
4. The vector field $\mathbf{F}(x,y) = \langle y^2 + 1, 2xy + 1 \rangle$ on \mathbb{R}^2 is conservative. Find a function f(x,y) where $\mathbf{F} = \nabla f$. (3 points)

$$f(x, y) =$$

5. Consider the following four regions in the plane: (1 point each)



$$R_2 = \begin{cases} x^2 + y^2 < 4 \\ \text{and } |y| > 1 \end{cases}$$



$$R_3 = \left\{ 4 \le x^2 + y^2 \right\}$$

 $R_4 = \begin{cases} 1 < x^2 + y^2 < 4 \\ \text{and } y < 0 \end{cases}$

- (a) Which region is closed?
- R_1 R_2 R_3 R_4
- (b) Which region is simply connected (and thus also connected)?

 R_1 R_2 R_3 R_4

Scratch Space

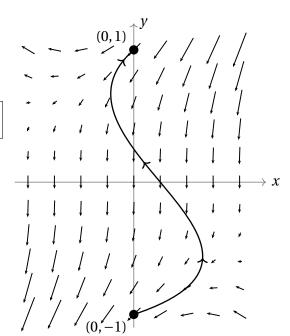
6. Find the mass of a thin wire in the shape of the curve parameterized by $\mathbf{r}(t) = \langle \sin t, 2t, \cos t \rangle$ for $0 \le t \le \pi$, if the wire has density function $\rho(x, y, z) = y$. **(4 points)**

Mass =

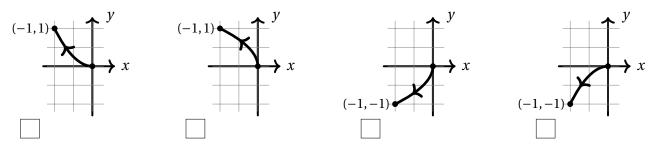
7. A vector field **F** is shown at right; for scale, $\mathbf{F}(0,0) = \langle 0, -0.1 \rangle$. Assuming that **F** is conservative, circle the value of $\int_C \mathbf{F} \cdot d\mathbf{r}$, where *C* is the curve shown from (0,-1) to (0,1).

-0.3	-0.2	-0.1	0	0.1	0.2	0.3

(2 points)



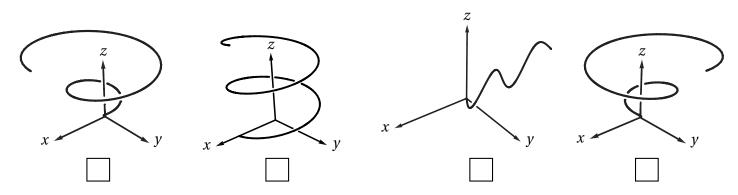
- **8.** Let *C* be the curve in \mathbb{R}^2 parameterized by $\mathbf{r}(t) = \langle -t^2, t \rangle$ for $0 \le t \le 1$.
 - (a) Mark the picture of *C* from among the choices below. (1 point)



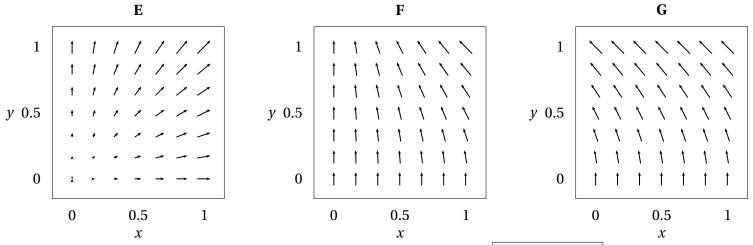
(b) For the vector field $\mathbf{F} = \langle 1, x \rangle$, calculate $\int_C \mathbf{F} \cdot d\mathbf{r}$. (4 points)

 $\int_C \mathbf{F} \cdot d\mathbf{r} =$

9. Mark the picture of the curve in \mathbb{R}^3 parameterized by $\mathbf{r}(t) = \langle t \sin t, t \cos t, t \rangle$ for $0 \le t \le 4\pi$. (2 points)



10. Consider the three vector fields E, F, and G on \mathbb{R}^2 shown below. (1 point each)



- (a) One of these vector fields is $\langle -xy, 1 \rangle$. Circle its name here:
- E F G (1 point)
- (b) Exactly one of these vector fields is conservative. Circle it here:
- E F G (1 point)

(c) Exactly one of the following is a flowline (also called a streamline or integral curve) for **E** parameterized by time for $0 \le t \le 1$. Circle it. (1 **point**)

 $\mathbf{r}(t) = \langle t, 1 - t \rangle$ $\mathbf{r}(t) = \langle t, \sqrt{t} \rangle$ $\mathbf{r}(t) = \langle t, t \rangle$ $\mathbf{r}(t) = \langle e^t, e^t \rangle$

Scratch Space