1. Consider the vector field $\mathbf{F}(x,y) = \langle y + e^x, x - \cos y \rangle$. Find a function f(x,y) such that $\mathbf{F} = \nabla f$. (2 points)

$$f_x = y + e^x \Rightarrow f = \int y + e^x dx = xy + e^x + C(y)$$

Then $f_y = x + Cy$. Since we want this to be $x - \cos y$, get $c_y = -\cos y \Rightarrow C = \int -\cos y \, dy = -\sin y$.
So $f = xy + e^x - \sin y$

$$f(x,y) = \chi y + e^{\chi} - \sin y$$

***By the Extreme Value Theorem, we need to check if the set is closed and bounded — then there MUST be a max/min. Otherwise, there might or might not have one.

- 2. For each of the given regions D in \mathbb{R}^2 below, circle the phrase that makes the sentence true. (1 point each)
 - (a) A continuous function on $D = \{x^2 + 4y^2 \ge 5\}$

must might or might not

have an absolute maximum. ***This set is not bounded

(c) A continuous function on $D = \{x^2 + 4y^2 < 5\}$

might or might not must not

have an absolute maximum.

***This set is not closed

(b) A continuous function on $D = \{x^2 + 4y^2 \le 5\}$

must) might or might not must not

have an absolute maximum.

(d) A continuous function on $D = \{x^2 + 4y^2 = 5\}$

must) might or might not must not

have an absolute maximum.

3. Suppose f(x, y) is a differentiable function with continuous second order partial derivatives and values given by the table below.

(x, y)	f(x, y)	$f_X(x,y)$	$f_y(x,y)$	$f_{xx}(x,y)$	$f_{yy}(x,y)$	$f_{xy}(x,y)$
(-1,0)	4	0	0	-2	-3	2
(0, 1)	0	0	1	1	2	0
(2, 1)	-2	0	0	1	1	3

(-1,0): $\begin{vmatrix} -2 & 2 \\ 2 & -3 \end{vmatrix} = 2$ fxx LO $(2,1): \left| \frac{13}{31} \right| = -840$

For each of the given points, circle the best description of the point. (1 point each)

(-1,0)	not critical local minimum local maximum saddle point undetermined	
(0,1)	not critical local minimum local maximum saddle point undetermined	f_y is not zero
(2,1)	not critical local minimum local maximum saddle point undetermined	

4. Find the maximum and minimum values of the function f(x,y) = -x + 2y on the curve $x^2 + 2y^2 = 3$. (5)

Set q(x,y) = x2+2y2. We seek the mm/max of f subject to the constraint 9 = 3. Use Lagrange Mult: $\nabla f = \langle -1, 2 \rangle = \lambda \nabla g = \lambda \langle 2x, 4y \rangle$ $= > -1 = 2\lambda x$ and $Q = 4\lambda y$. Note from these egn's, A cannot be Zero, and so they give $\frac{1}{\lambda} = -2x$ and $\frac{1}{\lambda} = 2y \implies -2x = 2y$ => y=-x. Combining w/our constraint g=3, we get $3 = \chi^2 + 2(-\chi)^2 = 3\chi^2 \Rightarrow \chi^2 = 1$ $\Rightarrow x = \pm 1$. Thus there are two crit pts

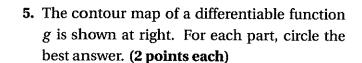
(x,y) = (1,-1) where f = -3 and (x,y) = (-1,1)where f = 3. As the curve $\chi^2 + 2y^2 = 3$ is an ellipse, it is closed and bounded; as f is cent.

The Extereme Value Thin applies to tell us that abs min/max must exist and hence must be

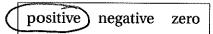
amongst the pts identified. Thus

Minimum value = -3

Maximum value = 43

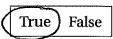


(a) The directional derivative $D_{\mathbf{v}}g(P)$ is:



***g is increasing in this direction

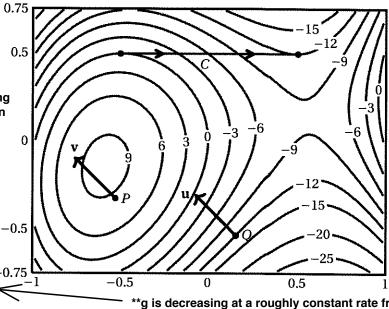
(b) The vector **u** is parallel to $\nabla g(Q)$.



***u is perpendicular to the level sets, as is the gradient

(c) Estimate $\int_C g(x, y) ds$.

$$-12 \quad -9 \quad \boxed{-6} \quad -3 \quad 0 \quad 3 \quad 6 \quad 9 \quad 12$$

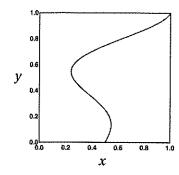


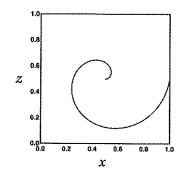
**g is decreasing at a roughly constant rate from zero to -12, so the average is approximatley -6. The length is one, so the integral is -6.

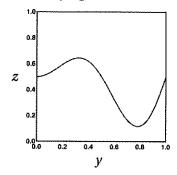
(d) Find
$$\int_C \nabla g \cdot d\mathbf{r}$$
:

***This is the fundamental Theorem of Line Integrals

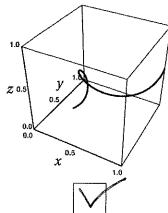
6. Consider the curve C in \mathbb{R}^3 whose projections onto the xy, xz and yz planes are:

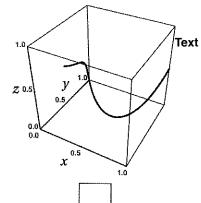


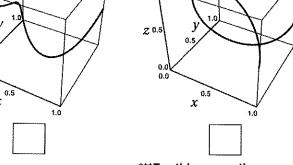




Check the box below the three-dimensional plot of C. (2 points)







**For this curve, the xz-projection does not end at (.5,.5), as the one above does.

***For this curve, the xz-projection should start and end at the same points (it should look like a closed curve).

8. (a) Let
$$S_1$$
 be the surface defined by $x = 2z^2 + y^2$ (an elliptic paraboloid). Find an equation for the tangent plane to S_1 at the point $(3,-1,1)$. (4 points)

Set
$$f = -\chi + y^2 + 2z^2$$
 So $S_1 = 9f = 09$. Normal to tangent plane is $\nabla f = \langle -1, 2y, 4z \rangle$ at $(3, -1, 1)$, i.e. $\vec{n} = \langle -1, -2, 4 \rangle$. Equation is thus $-1(\chi - 3) + (-2)(y + 1) + 4(z - 1) = 0$ \iff $-\chi - 2y + 4z = 3$

Equation:
$$\begin{bmatrix} -1 \end{bmatrix} x + \begin{bmatrix} -2 \end{bmatrix} y + \begin{bmatrix} 4 \end{bmatrix} z = \begin{bmatrix} 3 \end{bmatrix}$$

(b) Let S_1 be as in the previous part, and let S_2 be the surface defined by $y^2 + \frac{z^2}{4} = 1$ (a cylinder over an ellipse). Find a vector function $\mathbf{r}(t)$ that parametrizes the curve that is the intersection of the surfaces S_1 and S_2 . Specify the range of the parameter values so that the function traces the curve exactly once. (4 points)

Param. the ellipse
$$y^2 + \frac{z^2}{4} = 1$$
 in the yz-plane
by $y = \cos t$ and $z = 2\sin t$ for $0 \le t \le 2\pi$.
Now on S_1 have $x = 2z^2 + y^2$
 $= 2 \cdot (2\sin t)^2 + \cos^2 t = 8\sin^2 t + \cos^2 t$
 $= 7\sin^2 t + 1$

(1,0)

$$r(t) = \langle 7\sin^2 t + 1, \cos t \rangle \text{ for } 0 \le t \le 2\pi$$

- 7. Let C be the curve in three-dimensional space parametrized by $\mathbf{r}(t) = \langle 2\cos t, 2\sin t, t \rangle$ for $-\pi \le t \le \pi$.
 - (a) Find the mass of a thin wire in the shape of C, if the density function is $\rho(x, y, z) = x + z + 10$. (5 points)

$$Mass = \int X + z + 10 \, ds = \int (2 \cos t + t + 10) |\vec{r}'(t)| \, dt$$

$$\vec{r}'(t) = (-2 \sin t, 2 \cos t, 1) = \sqrt{5} \left(2 \sin t + t^2 + 10 t\right) |_{t=-\pi}$$

$$|\vec{r}'(t)| = \sqrt{4 \sin^2 t + 4 \cos^2 t + 1} = 20 \sqrt{5} \tau$$

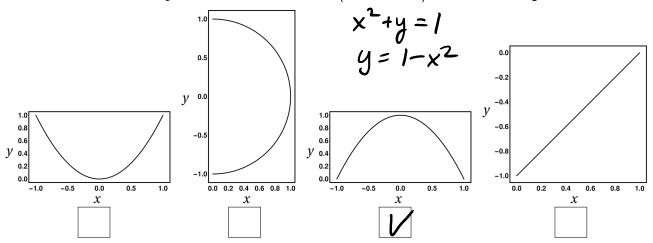
(b) Suppose that a particle moves along C/Find the work done on the particle by the force $\mathbf{F}(x, y, z) = y\mathbf{i} - x\mathbf{j}$. (5 **points**)

Work =
$$\int_{C}^{\pi} (2 \sin t, -2 \cos t, 0) \cdot (-2 \sin t, 2 \cot t, 1) dt$$

= $\int_{-\pi}^{\pi} (-4 \sin^2 t - 4 \cos^2 t + 0) dt = -4 \int_{-\pi}^{\pi} dt$
= -8π

Work =
$$-8\pi$$

9. Check the box below the picture of the curve $\mathbf{r}(t) = \langle \sin t, \cos^2 t \rangle$, $0 \le t \le 2\pi$. (2 points)



10. A vector field \mathbf{G} is plotted at right.

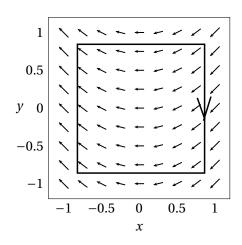
(a) Circle the formula for **G**. (1 point)

$$x\mathbf{i} + y\mathbf{j}$$
 $-x\mathbf{i} - \mathbf{j}$ $(\mathbf{i} - x\mathbf{j})$ $y\mathbf{i} - \mathbf{j}$

***Check at (0,1)

(b) **G** is conservative. (1 point)

***The integral around the closed curve shown (the square) is positive, since the top and bottom cancel, and the sides both contribute positively.



(0,1)

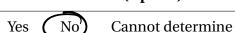
11. The region D defined by $\{0.03 < x^2 + y^2 < 1.3\}$ is shown at right. Within this region are three curves A, B, C. Each curve starts at (0,-1) and ends at (0,1). Suppose that $\mathbf{F}(x,y) = P(x,y)\mathbf{i} + Q(x,y)\mathbf{j}$ is a differentiable vector field defined on D with the properties

$$\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}, \quad \int_A \mathbf{F} \cdot d\mathbf{r} = -1, \text{ and } \int_C \mathbf{F} \cdot d\mathbf{r} = 2.$$

(a) The region D is simply connected. (1 point)

***There is a hole in the middle so it cannot be simply connected.

(b) F is conservative. (1 point)



***The integral around the closed curve A.(-C)

***The curves B and C are contained in a simply connected open subset. So on this subset the vector field is conservative, and the integral over B and C are thus equal.