1. Consider the function f: R? — R given by f(x, y) = x — . Let C be the circle x* + y* = 2.

(a) Use Lagrange multipliers to find the absolute max and min of f on C. (5 points)
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(b) Find the absolute max of f on R? if it exists. (1 point)
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2. Consider the differentiable function f(x, y) on the rectangle D

{0 < x <6 and 0 < y < 4} whose contours

are shown below right. For each part, circle the best answer. (1 point each)
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(a) The maximum value of f on D is:
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(b) The value of Dy f (P) is:
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(c) The number of critical points

of f in D which are saddles is:
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(h) Mark the plot below of the gradient vector field V.

(f) The integral f Vf-dris:
C

O-4

N NN Ny A

[N Y ST T T 2 A A

b waar o -

.//AIA\\\\\ ;s

—-— At A~ S

LA N - s AN A ]

| ) AN
XA NN

.q\\.x«.«,./,

(

////k«\\\\ AN Y F
SRSV IPIe: IR GV s
A P AN ]y
oA AAANNNNS] AN\
SRR .N\A\»;,y,,v
T TTTTTTT
e e e S I S~ ~ - A A
NN~ A A ,.,,,\\\\\\\.
LV N - s A A A A ] SRR I
\\/z»\\\\\. T W T T
.L\All//;\\\\\\\\‘. \\\;//////.
[ t——— - - L v e e~ N ) X X

R R N N

(I

Lon(C)- Agfgéc"{i < ;2

(j)=§$ds=



3. Let C be the curve in R? that is the intersection between the circular cylinder x + (z — 1)? = 4 and the plane

xX+y+z=1.

(a) Find a vector function r(¢) that parameterizes C, traversing the whole curve exactly once. Be sure to
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specify the domain of your parameterization. (4 points) k
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(b) The vector v = (1, 2, 3) is tangent to C at some point: true (ﬁse 1 point)
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4. The vector field F(x,y) =(y*+1, 2xy+1) on R? is conservative. Find a function f(x,y) where F=Vf.
(3 points)
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5. Consider the following four regions in the plane: (1 point each)
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6. Find the mass of a thin wire in the shape of the curve parameterized by () = (sint, 2¢, cost) forO<t =,
if the wire has density function p(x,y,z) = y. (4 points)

Mass = 5 0 ds = jﬂg(m)) | Te) | 4t

~ T

SR REE J’f/ L E

T/ft) = Leost, Z,-sint)
I70e) | = Jeos™t +27% sint
= /5

7. Avector field F is shown at right; for scale, F(0,0) = (0, —0.1). ©,1) y
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8. Let C be the curve in R? parameterized by r(¢) = (-2, t) for0<t<1.

(a) Mark the picture of C from among the choices below. (1 point)
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r4ny= 0,4, 4m) N YZ-plane

9. Mark the picture of the curve in R3 parametenzed by r(f) = (tsint, tcost, t) for0 <t <4n. (2 points)
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10. Consider the three vector fields E, F, and G on R? shown below. (1 point each)
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(a) One of these vector fields is (—xy, 1). Circle its name here: E ( ) G (1 point)
/\v
(b) Exactly one of these vector fields is conservative. Circle it here: E) F G (1 point)
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(c) Exactly one of the following is a flowline (also called a streamline or integral curve) for E parameterized

by timefor0 <t < 1. Circle it. (1 point) Either of these answers was accepted as correct as the
range of v on the left is not in the picture. It is

however the actual flow line for -(infinity) < t < 0.
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Nathan Dunfield
Either of these answers was accepted as correct as the range of r on the left is not in the picture.  It is however the actual flow line for –(infinity) < t < 0.


