1. Let *R* be the region of integration pictured below right. Evaluate $\iint_R 6y \, dA$. (4 points)

$$\iint_R 6y \ dA =$$

2. Set up, but DO NOT EVALUATE, a triple integral that computes the volume of the tetrahedron shown at right. **(5 points)**

3. Set up, but DO NOT EVALUATE, a triple integral that computes the volume of the region that lies inside the sphere $x^2 + y^2 + z^2 = 2$ and above the cone $z = \sqrt{x^2 + y^2}$. **(5 points)**

5. Find a transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ which takes the unit circle to the ellipse given by $(x-3)^2 + \frac{y^2}{4} = 1$ as shown. (3 points)

$$T(u,v) = \left(\qquad , \qquad \right)$$

- **6.** Let *R* be the region in the *xy*-plane depicted below right. Let T(u, v) = (2u + v, u v).
 - (a) Find a rectangle S in the uv-plane whose image under T (that is, the collection of points T(u, v) for all choices of (u, v) in S) is exactly R. **(3 points)**

ANSWER:
$$S = \{(u, v) \mid S \leq u \leq S\}$$

(b) Set up, but DO NOT EVALUATE, the integral $\iint_R \cos(x) dA$ as an integral in the (u, v)-coordinates. If you can't do part (a), leave the limits of integration blank. **(5 points)**

$$\iint_{R} \cos(x) \ dA =$$

7. Let $\mathbf{F}(x,y) = \langle x^2, x^2 \cos(y) \rangle$. Then $\iint_R \left[\frac{\partial}{\partial x} \left(x^2 \cos(y) \right) - \frac{\partial}{\partial y} \left(x^2 \right) \right] dA = 0$ where R is the region shown below. Compute $\int_C \mathbf{F} \cdot d\mathbf{r}$, where C is the pictured curve that goes from (-3,0) to (3,0) via (0,2). (3 points)

- **8.** Consider the region *D* in the plane bounded by the curve *C* as shown at right. For each part, circle the best answer. **(1 point each)**
 - (a) For $\mathbf{F}(x, y) = \langle x + 1, y^2 \rangle$, the integral $\int_C \mathbf{F} \cdot d\mathbf{r}$ is negative zero positive

- (c) The integral $\iint_D (y-x) dA$ is negative zero positive
- **9.** For each surface *S* below, give a parameterization $\mathbf{r} \colon D \to S$. Be sure to explicitly specify the domain *D* and call your parameters *u* and *v*.
 - (a) The rectangle in \mathbb{R}^3 with vertices (1,0,0), (0,1,0), (1,0,2), (0,1,2). (3 points)

(b) The portion of cone $y = \sqrt{x^2 + z^2}$ for $0 \le y \le 1$ which is shown at right. **(4 points)**

$$D = \left\{ \qquad \leq u \leq \qquad \text{and} \qquad \leq v \leq \qquad \right\}$$

$$\mathbf{r}(u,v) = \langle \qquad , \qquad \rangle$$

(a) Mark the correct picture of *S* below. (2 points)

(b) Evaluate the integral $\iint_S z \ dA$. (6 points)

$$\iint_{S} z \ dA =$$

11. Consider the solid described as follows using cylindrical coordinates: *E* is the region inside the paraboloid $z = 1 - r^2$ and where $0 \le \theta \le \pi$ and $z \ge 0$. Choose one double integral and one triple integral below that compute the volume of E. (1 point each)