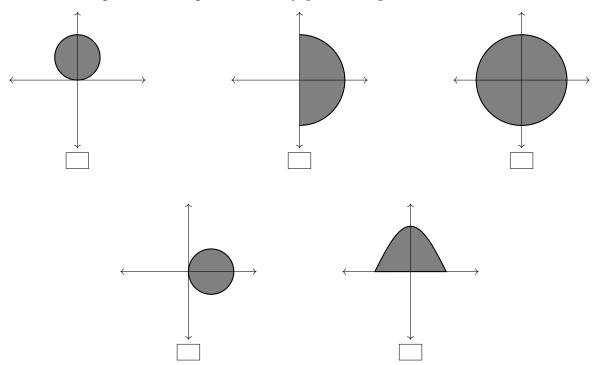
1. Suppose the integral of the function $f(x, y) = x^2 + y$ over a region R has the following form after changing to polar coordinates:

$$\iint_{R} x^{2} + y \, dA = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \int_{0}^{2\cos\theta} g(r,\theta) \, dr \, d\theta,$$

for some function $g(r, \theta)$.

(a) Which of the following shows the region R in the xy-plane? (2 points)



(b) Find the integrand $g(r,\theta)$ and fill in blank in the integral below. (3 points)

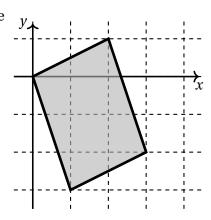
$$\iint_{R} x^2 + y \, dA = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \int_{0}^{2\cos\theta} dr \, d\theta$$

2. Compute the following double integral: (5 points)

$$\int_1^2 \int_0^x 2x + 2y \, dy dx.$$

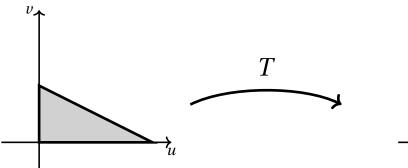
$$\int_1^2 \int_0^x 2x + 2y \, dy dx =$$

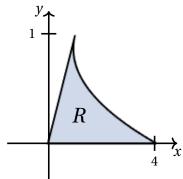
3. Find a linear transformation T that sends the unit square $[0,1] \times [0,1]$ to the parallelogram drawn to the right against a dashed grid of unit squares. **(3 points)**



$$T(u,v) = \left($$
 ,

4. The transformation $T(u, v) = (u^2 + v, v)$ takes the triangle with vertices (0,0), (2,0), and (0,1) to the region R as shown below. Find the missing limits of integration and circle the correct integrand for the iterated integral that computes *the area of R*. (Note that the order of integration is already determined.) **(5 points)**





Fill in the limits of integration

$$Area(R) = \int \int g(u, v) \, dv \, du$$

Circle the correct integrand.
$$g(u, v) =$$

$$u^2v$$

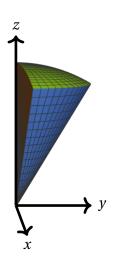
$$uv^2$$

$$2\nu$$

$$u^2 + v$$

$$v^2 + u$$

5. In this problem you are to set up the integral of the function yz over the region R(shown to the right) in the first octant above the cone $z^2 = 3x^2 + 3y^2$ and inside the sphere $x^2 + y^2 + z^2 = 16$. Check the box next to the integral with the correct limits of integration, then circle the correct integrand. (4 points)



$$\iiint_R yz\,dV =$$

$$\int_0^{\frac{\pi}{2}} \int_0^{\frac{\pi}{6}} \int_0^2 h(\rho,\theta,\phi) \, d\rho \, d\phi \, d\theta$$

$$\int_0^{\frac{\pi}{2}} \int_0^{\frac{\pi}{6}} \int_0^{16} h(\rho,\theta,\phi) d\rho d\phi d\theta$$

$$h(\rho,\theta,\phi) = \rho^{0}$$

$$s\phi \qquad \rho^4 \sin\theta \sin^2\phi \cos\phi$$

$$\rho^5 \sin\theta \cos^2\phi \sin\phi$$

$$h(\rho,\theta,\phi) = \begin{vmatrix} \rho^3 \sin\theta \sin^2\phi \cos\phi & \rho^4 \sin\theta \sin^2\phi \cos\phi \\ \rho^3 \cos\theta \sin^2\phi \cos\phi & \rho^4 \cos\theta \sin^2\phi \cos\phi \end{vmatrix}$$

$$\rho^4 \cos\theta \sin^2\phi \cos\phi$$

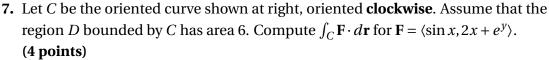
$$\rho^5 \cos \theta \cos^2 \phi \sin \phi$$

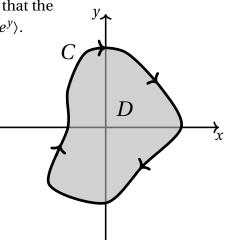
6. Consider a solid object with density ρ_0 that occupies a region E in \mathbb{R}^3 . The moment of inertia of the solid around the *x*-axis is given by

$$I_X = \iiint_E g(x, y, z) \, dV,$$

for some function g(x, y, z). Circle the correct integrand. (2 points)

$$g(x, y, z) = \begin{cases} \rho_0(x^2 + y^2 + z^2) & \rho_0(y^2 + z^2) & \rho_0(x^2 + y^2) & \rho_0(x^2 + z^2) & \rho_0 x^2 & \rho_0 x & \rho_0 y^2 & \rho_0 y &$$



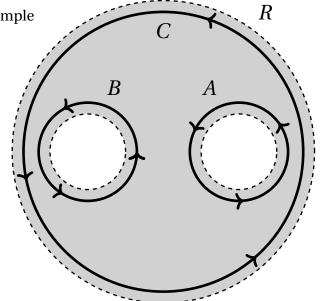


$$\int_C \mathbf{F} \cdot d\mathbf{r} =$$

8. Consider the region *R* shown at the right which contains simple closed curves A, B, C, all oriented counterclockwise. Suppose that $\mathbf{F} = \langle P, Q \rangle$ is a vector field with continuous partial derivatives on R with the properties

$$\frac{\partial Q}{\partial x} = \frac{\partial P}{\partial y}, \quad \int_A \mathbf{F} \cdot d\mathbf{r} = 2 \quad \text{and} \quad \int_B \mathbf{F} \cdot d\mathbf{r} = -1$$

(a) Find $\int_C \mathbf{F} \cdot d\mathbf{r}$. Circle your answer below. (2 points)



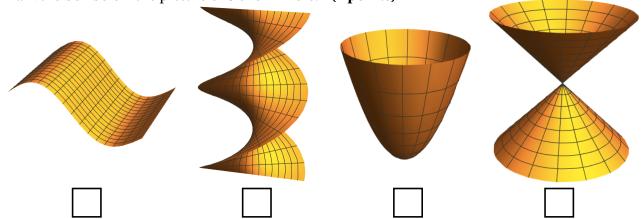
$$\int_C \mathbf{F} \cdot d\mathbf{r} = \begin{bmatrix} -3 & -2 & -1 & 0 & 1 & 2 & 3 \end{bmatrix}$$

(b) **True or False?** (Circle your answer.) The vector field **F** is conservative. **(2 points)**

False True

9. Let *S* be the surface in \mathbb{R}^3 parameterized by $\mathbf{r}(u, v) = \langle v \cos u, v \sin u, u \rangle$, for *u* in $[0, 2\pi]$ and *v* in [-2, 2].

(a) Mark the box below the picture of *S* shown here. **(2 points)**



(b) Compute the partial derivatives of **r**. (1 **point each**)

$$\mathbf{r}_{u} = \left\langle \begin{array}{cccc} & & & & \\ & & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & &$$

(c) Find a vector **n** that is perpendicular to the tangent plane to *S* at the point $\mathbf{r}(\frac{\pi}{6}, 1) = (\frac{\sqrt{3}}{2}, \frac{1}{2}, \frac{\pi}{6})$. **(2 points)**

$$\mathbf{n} = \boxed{\left\langle \qquad , \qquad , \qquad \right\rangle}$$

(d) Fill in the limits and integrand of the double integral below that computes $\iint_S 2y \, dS$. Do not evaluate. (3 points)

$$\int_{S} 2y \, dS = \int \int \int du \, dv$$

10. Let *S* be the triangle through the points (0,0,0), (2,1,0), and (1,0,3). Parameterize the surface *S* by $\mathbf{r} \colon D \to \mathbf{R}^3$, being sure to specify the domain *D* of the parameterization in the (u,v) plane. Note: you will receive partial credit if you parameterize the plane through those three points. **(4 points)**

$$D = \left\{ (u, v) : \leq u \leq , \leq v \leq \right\}$$

$$\mathbf{r}(t) = \left\langle \begin{array}{c} \\ \\ \end{array} \right.$$