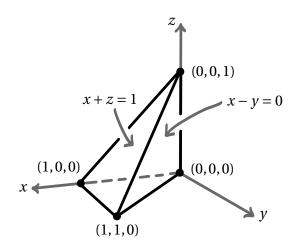
1. Fill in the limits and integrand of the triple integral below so that it computes the volume of the tetrahedron shown at right. (4 points)

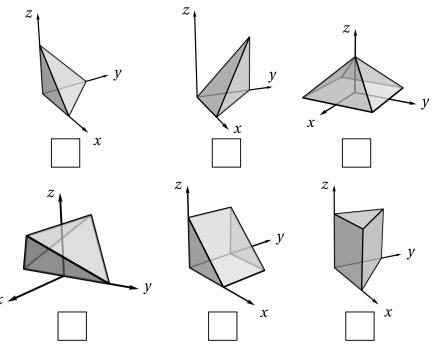


Volume =
$$\int \int \int d d d$$

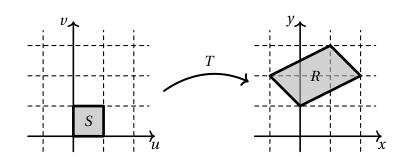
2. Mark the box below the picture corresponding to the region of integration for the triple integral:

$$\int_0^1 \int_z^1 \int_0^{1-y} f(x, y, z) \, dx \, dy \, dz$$

(2 points)



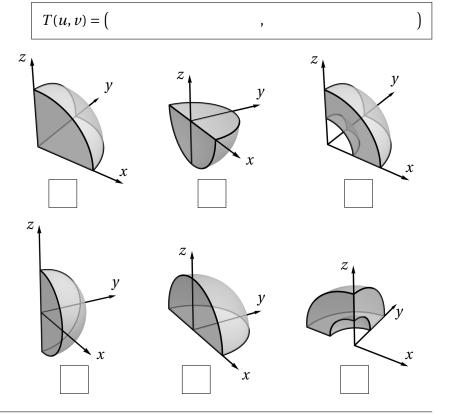
3. Find a transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ taking the unit square S to the parallelogram R shown at right, where both are shown against a grid of unit squares. **(4 points)**



4. For each of the given integrals, label the box below the picture of the corresponding region of integration in spherical coordinates. **(2 points each)**

(A)
$$\int_{\pi/2}^{\pi} \int_{0}^{\pi/2} \int_{1}^{2} \rho^{2} \sin \phi \, d\rho \, d\phi \, d\theta$$

$$(B) \quad \int_0^{\pi} \int_{\pi/2}^{\pi} \int_0^2 \rho^2 \sin\phi \ d\rho \ d\phi \ d\theta$$

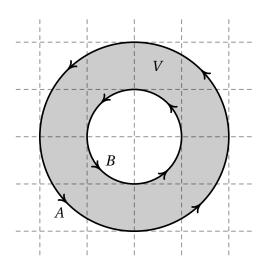


Scratch Space

5. Let *A* and *B* be the oriented circles shown at right against a grid of unit squares, and let *V* be the region between them. Suppose $F = \langle P, Q \rangle$ is a vector field on *V* where

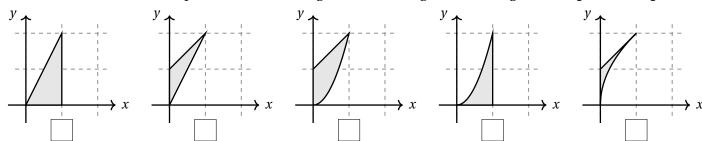
$$\frac{\partial Q}{\partial x} = \frac{\partial P}{\partial y} - 3$$
 and $\int_A \mathbf{F} \cdot d\mathbf{r} = 10$.

Compute $\int_{B} \mathbf{F} \cdot d\mathbf{r}$. (5 points)



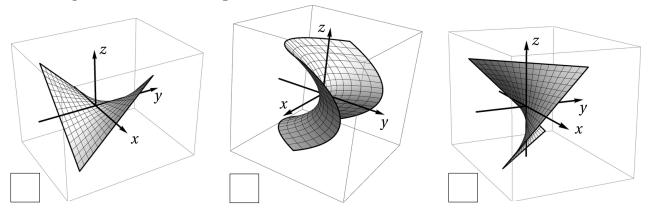
$$\int_{B} \mathbf{F} \cdot d\mathbf{r} =$$

- **6.** Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be the transformation T(u, v) = (v, u v + 2uv). Let S be the triangle in the (u, v)-plane whose vertices are (0,0), (1,0), (1,1) and let R = T(S) be the region that is the image of S under T.
 - (a) Check the box below the picture of *R* drawn against a dashed grid consisting of **unit squares**. **(2 points)**



(b) Fill in the limits and integrand of the integral below so that it computes $\iint_R \cos(x+y) dA$ as an integral over the square S. (4 **points**)

- 7. Let *S* be the surface parameterized by $\mathbf{r}(u, v) = \langle u, uv, v \rangle$ for $-1 \le u \le 1$ and $-1 \le v \le 1$.
 - (a) Mark the picture of *S* below. **(2 points)**



(b) Completely setup, but do not evaluate, the surface integral $\iint_S x^2 dS$. (5 **points**)

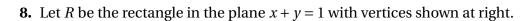
$$\iint_{S} x^{2} dS = \int_{-1}^{1} \int_{-1}^{1} du dv$$

(c) Circle the number closest to the area of *S*:

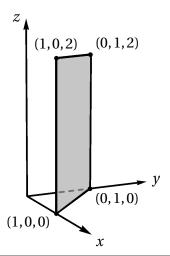
1 3 5 7 9 11 13 15 (1 point)

(d) Find the tangent plane to S at (0,0,0). (1 point)

Equation:
$$x + y + z = z$$



(a) Parameterize R by $\mathbf{r} \colon D \to \mathbb{R}^3$, being sure to specify the domain Dof the parameterization in the (u, v)-plane. (3 points)



$$D = \left\{ \qquad \qquad , \qquad \qquad , \qquad \qquad \right\}$$

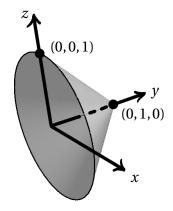
(b) The integral $\iint_R z - 1 \ dS$ is:

negative zero positive

(1 point)

9. Consider the cone *C* shown at right.

(a) Parameterize C by $\mathbf{r} \colon D \to \mathbb{R}^3$, being sure to specify the domain D of the parameterization in the (u, v)-plane. (3 points)



$$D = \left\{$$

$$\mathbf{r}(u,v) = \langle$$
,

(b) The integral $\iint_C y \, dS$ is: (1 point) negative zero positive

Extra Credit: Consider the transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ which distorts the plane as shown below. Draw in T(0,0) on the right-hand part of the picture and compute the Jacobian matrix of T at (0,0), taking it as given that the entries of the matrix are integers and that the grid at left is made of unit squares. Be sure to explain your answer.

Note: If you need a makeshift ruler, you can tear off part of the upper right corner of this sheet. **(2 points)**

