
SOLUTION 1 (Integrate first with respect to x):∫∫
R

12y dA =

∫ 1

0

∫ 2−y

y2
12y dx dy =

∫ 1

0

12xy
∣∣∣x=2−y

x=y2
dy =

∫ 1

0

12y(2− y − y2) dy =

∫ 1

0

24y − 12y2 − 12y3 dy

= (12y2 − 4y3 − 3y4)
∣∣∣y=1

y=0
= 12− 4− 3 = 5.

SOLUTION 2 (Integrate first with respect to y):∫∫
R

12y dA =

∫ 1

0

∫ √x
0

12y dy dx+

∫ 2

1

∫ 2−x

0

12y dy dx =

∫ 1

0

6y2
∣∣∣y=√x
y=0

dx+

∫ 2

1

6y2
∣∣∣y=2−x

y=0
dx

=

∫ 1

0

6x dx+

∫ 2

1

6(2− x)2 dx = 3x2
∣∣∣1
0
− 2(2− x)3

∣∣∣2
1

= 3 + 2 = 5.

∫∫
R

12y dA = 5



SOLUTION:
It is convenient to put the integral on the z-variable on the outside. This corresponds to slicing along the z-axis with planes
parallel to the (x, y)-plane. For each z between 0 and 1, the cross section is a square with center on the z-axis. Its projection
onto the (x, y)-plane looks like this:

x

y

The vertices of the square lie in the planes whose equations given above. Solving them for x and y gives

x = 1− z, x = z − 1, y = 1− z, y = z − 1.

Note that for z between 0 and 1 we have 1− z ≥ 0 and z − 1 ≤ 0. Hence

x

y

(1− z, 1− z)(z − 1, 1− z)

(z − 1, z − 1) (1− z, z − 1)

For each fixed z, both x and y vary between z − 1 and z − 1.

V olume =

∫ 1

0

∫ 1−z

z−1

∫ 1−z

z−1
1 dx dy dz



SOLUTION:

For reference, number the figures from 1 to 6 from top left to bottom right.

For (a), note that the height z goes from 0 to r2. The only figures where the height of the solid is bounded below by 0 are
1, 3 and 4. In 1 and 4, however, the height decreases with the radius. Hence (a) corresponds to figure 3.

For (b), note that at height z the radius of the solid goes from 0 to
√
z. The only two figures where the radius increases with

the height are number 2 and number 6. In number 2, however, the radius grows linearly with the height. Hence the integral
(b) corresponds to figure 6.



SOLUTION:∫
C

F · dr = −
∫∫

R

(
∂Q

∂x
− ∂P

∂y

)
dA = −

∫∫
R

2 dA = −2Area(R) = −π.

∫
C

F · dr = −π

SOLUTION:

Let C ′′ denote the oriented segment from (−1, 0) to (1, 0). Then∫
C

F · dr =

∫
C′

F · dr−
∫
C′′

F · dr

Using Part (a) we get

∫
C′

F · dr =

∫
C

F · dr+
∫
C′′

F · dr = −π +

∫
C′′

F · dr = −π +

∫
C′′

Pdx+Qdy = −π +

∫ 1

−1
(x− 1)dx = −π − 2.

∫
C′

F · dr = −π − 2



SOLUTION:

We want to find expressions for x and y in terms of u and v, so that (x, y) = T (u, v). Note that the second coordinate
is preserved, and therefore y = v. Moreover, looking at the two vertical sides of the square, we see that they are sent to
hyperbolae. More precisely, the line u = 1 is sent to the hyperbola xy = 1, and the line x = 2 is sent to the hyperbola xy = 2.
Hence we have xy = u. Since y = v, we conclude that x = u/v.

T (u, v) =
〈u
v
, v
〉

SOLUTION:

The Jacobian matrix of T is given by

J =

(
1/v −u/v2
0 1

)
.

Hence det J = 1/v. We have

∫∫
R

y2 dA =

∫∫
S

v2
∣∣det J∣∣ du dv =

∫ 2

1

∫ 2

1

v2 · 1
v
du dv =

∫ 2

1

v dv =
v2

2

∣∣∣∣v=2

v=1

= 1.5

∫∫
R

y2 dA = 1.5



SOLUTION:

The parameterization satisfies x2 + z2 = y2, which is the equation of a cone. The correct picture is therefore the second one.

SOLUTION:

We start by computing |ru × rv|. We have

ru × rv =

∣∣∣∣∣∣
i j k

−v sinu 0 v cosu
cosu 1 sinu

∣∣∣∣∣∣ = 〈− v cosu, v,−v sinu〉.
Hence

|ru × rv| =
√
v2 cos2 u+ v2 + v2 sin2 u =

√
2v.

The wanted integral is given by∫∫
S

y dA =

∫ 2π

0

∫ 1

0

v|ru × rv| dv du =

∫ 2π

0

∫ 1

0

√
2v2 dv du =

∫ 2π

0

√
2

3
v3
∣∣∣v=1

v=0
du =

∫ 2π

0

√
2

3
du =

2
√
2

3
π.

∫∫
S

y dA =
2
√
2

3
π



SOLUTION:

We need to find bounds for the spherical coordinates θ, φ, and ρ. Clearly we have 0 ≤ θ ≤ 2π.
To find the bounds for φ, we look at the intersection of E with the plane y = 0. This intersection consists of the triangle
enclosed by the lines z = 2, z = x, and z = −x.

x
φ

z

Hence 0 ≤ φ ≤ π/4.
To find the bounds on ρ, recall that z = ρ cosφ. The maximum value of z in E is z = 2. Hence the upper bound for ρ is
when 2 = ρ cosφ, that is, ρ = 2 secφ.
Finally, recall that in spherical coordinates we have dV = ρ2 sinφdρ dφ dθ.

V olume =

∫ 2π

0

∫ π
4

0

∫ 2 secφ

0

ρ2 sinφdρ dφ dθ



SOLUTION: We use spherical coordinates with ρ = 1. We take as parameters u = φ and v = θ. Note that we are trying
to parameterize the half of the unit sphere for which x ≥ 0. In this region −π2 ≤ θ ≤ π

2 . As in the parameterization of the
sphere, φ varies between 0 and π.

D =

{
0 ≤ u ≤ π and − π

2
≤ θ ≤ π

2

}
r(u, v) = {sinu cos v, sinu sin v, cosu}



SOLUTION: We can use u = x and y = v. Then z = 1− x/2− y = 1− u/2− v. Ww now need to find bounds for x and y.
We are trying to parameterize the triangle shown in the figure below.

y

z

x (2, 0, 0)

(0, 1, 0)

(0, 0, 1)

The region to parameterize lies over the triangle on the (x, y) plane represented below. This triangle has vertices in (0, 0), (2, 0)
and (0, 1). The hypotenuse is part of the line x/2 + y = 1 (intersection of x/2 + y + z = 1 with z = 0).

x

y

Note that x varies between 0 and 2. For each such x, the variable y varies between 0 and 1− x/2− y.

D =

{
0 ≤ u ≤ 2 and 0 ≤ 1− u

2

}

r(u, v) = {u, v, 1− u

2
− v}



SOLUTION: The region M is the portion of the cylinder shaded in the figure below.

At the bottom of M we have z = v = 0.
At the top of M we have x+ z = 2, that is, cosu+ z = 2. Hence the upper bound for v is v = 2− cosu.

D =
{
0 ≤ u ≤ 2π and 0 ≤ v ≤ 2− cosu

}

SOLUTION: Looking at the picture above, we see that for the largest portion of the surface M the x-coordinate is negative.∫∫
M

x dS is NEGATIVE


