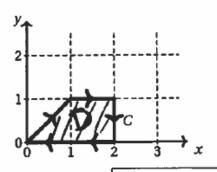
Let C be the oriented curve shown at right against a dashed grid of unit squares. Compute $\int_C \mathbf{P} \cdot d\mathbf{r}$ for $\mathbf{F} = \langle y^2 + \cos x, x + e^y \rangle$. (6 points)

By Mr. Green:



 $\int_{C} \mathbf{F} \cdot d\mathbf{r} = -1/6$

$$= \iint_{D} \frac{\partial P}{\partial y} - \frac{\partial G}{\partial x} dA = \iint_{D} 2y - 1 dA$$

$$=\int_0^1 \int_y^2 2y - 1$$

$$= \int_{0}^{3} \frac{(2y-1)(2-y)}{(2y-1)(2-y)} dy = -\frac{2}{3}y^{3} + \frac{5}{2}y^{2} - \frac{2}{2}y \Big|_{y=0}^{1}$$

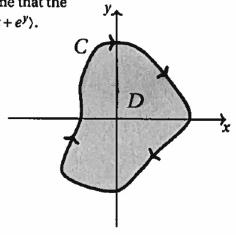
$$-2y^{2} + 5y - 2$$

$$=-\frac{2}{3}+\frac{5}{2}-2=\frac{-4+15-12}{6}=-\frac{1}{6}$$

Let C be the oriented curve shown at right, oriented **clockwise**. Assume that the region D bounded by C has area 6. Compute $\int_C \mathbf{F} \cdot d\mathbf{r}$ for $\mathbf{F} = \langle \sin x, 2x + e^y \rangle$. (4 points)

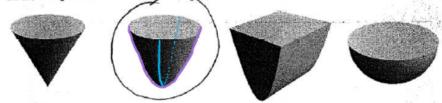
By Green's theorem, since C = -0D $\int_{C} \dot{F} \cdot d\dot{r} = -\iint (Q_{x} - P_{y}) dA$ $= -\iint 2dA$ $= -2\iint dA$ = -2(Area(D))

= -/2:



$$\int_C \mathbf{F} \cdot d\mathbf{r} = \boxed{-12}$$

Consider the region R in \mathbb{R}^3 above the surface $x^2 + y^2 - z = 4$ and below the xy-plane. Also (a) Circle the picture of R below. (2 pts) y = 0: $z = y^2 - 4$ $P_{\alpha c \alpha bol \alpha s}$ consider the vector field $\mathbf{F} = (0, 0, z)$.



(b) Directly calculate the flux of F through the entire surface ∂R , with respect to the outward Now OR = (T = 1) and (S = D) First, If F. F. AdA = II_ (0,0,0) . (0,0,1) dA = II_ odA = O. Second, lets param. 5 by $F(u,v) = (u,v,u^2+v^2-4)$ on $D = \{u^2+v^2 \leq 4\}$, Then TuxTv = | i j k = (-zu, -zv, 1). As this points the wrong way we use TyxTu instead. Now Flux = SI (F. Ti) dA = If F(F(u,v)). (Fxxfu) dudv = Sf (0,0, u2+v2-4). (2u,2v,-1) dudv $= \iint_{D} 4-u^{2}-v^{2} du dv = \int_{0}^{2} \int_{0}^{2\pi} (4-r^{2}) r d\theta dr = 2\pi \int_{0}^{2\pi} 4r - r^{3} dr$ $=2\pi \left(2r^{2}-\frac{r^{4}}{4}\right)\Big|_{r=0}^{r=2}=2\pi \left(8-4\right)=\boxed{8\pi}$ Hence SIFINDA = SIFINDA + SIFINDA = 0+81= 81

(c) Use the Divergence Theorem and your answer in (b) to compute the volume of R. (3 pts)

$$\iint_{\partial R} \vec{F} \cdot \vec{n} \, dA = \iiint_{R} div \vec{F} \, dV = \iiint_{R} 1 \, dV = Volume.$$

$$\frac{\partial o}{\partial x} \cdot \frac{\partial o}{\partial y} \cdot \frac{\partial z}{\partial z} \qquad So: Vol = 8\pi.$$

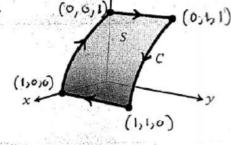
$$= 1$$

Let C be the curve shown at right, which is the boundary of the portion of the surface $x + z^2 = 1$ in the positive octant where additionally $y \le 1$.

(a) Label the four corners of C with their (x, y, z)-coordinates. (1 pt)

(b) For $\mathbf{F} = (0, xyz, xyz)$, directly compute $\int_C \mathbf{F} \cdot d\mathbf{r}$. (6 pts)

Break C up into Got fe



Notice if any of x, y or 2 is O, then F = 0. Thus for any Ci except Ci, we have $\int \vec{F} \cdot d\vec{r} = \int_{Ci} \vec{o} \cdot d\vec{r} = 0$.

For C, we parameterize - C, via F(t)=(1-t2,1,t) for 05t≤1.

So $\int_{C_{i}} \vec{F} \cdot d\vec{r} = -\int_{-C_{i}} \vec{F} \cdot d\vec{r} = -\int_{0}^{1} (0, t - t^{2}, t - t^{3}) \cdot (-2t, 0, 1) dt$ = \int t3-t dt = t4/4- \frac{1}{2} = + \frac{1}{4}

(c) Compute curl F. (2 pts) Hence $\int_{C} \vec{F} \cdot d\vec{r} = \sum_{i} \int_{C_{i}} \vec{F} \cdot d\vec{r} = 0 + 0 + 0 - \frac{1}{4}$ Carl $\vec{F} = \begin{bmatrix} i & j & k \\ \frac{1}{2}\sqrt{3}x & \frac{3}{2}\sqrt{3}y & \frac{3}{2}\sqrt{2} \end{bmatrix} = (xz - xy, -yz, yz)$

(d) Use Stokes' Theorem to compute the flux of curl F through the surface S where the normals point out from the origin. (3 pts)

((cure F) · n dA = -) F · dr = 4

(e) Give two distinct reasons why the vector field F is not conservative. (2 pts

curl F \$0 and C is a closed curve with ∫ F.d= ≠0.

Consider the vector field $\mathbf{F}(x,y) = \langle ye^x, e^x + x \rangle$. Let R be the half disk below, and let C be the boundary of R, oriented as shown.

(a) Use Green's Theorem to compute $\int_C \mathbf{F} \cdot d\mathbf{r}$. (4 points)

$$\int_{C} \vec{F} \cdot dr = - \int_{-C} \vec{F} \cdot d\vec{r} = - \iint_{R} \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} dA$$

$$=-\iint_{R}(e^{x}+1)-(e^{x})dA=-\iint_{R}1dA$$

$$= -\operatorname{Area}(A) = -\operatorname{T}/2$$

$$\int_C \mathbf{F} \cdot d\mathbf{r} = - \pi / 2$$

(0, 1)

(b) Let C_0 be the round part of C, that is, just the semicircle from (1,0) to (-1,0), not including the y-axis.

Compute $\int_{C_0}^{\infty} \mathbf{F} \cdot d\mathbf{r}$. (2 points) Let A be the vertical segment from (0,-1) to (0,1). Then $\int_{C}^{\infty} \mathbf{F} \cdot d\mathbf{r} = \int_{C}^{\infty} \mathbf{F} \cdot d\mathbf{r} + \int_{A}^{\infty} \mathbf{F} \cdot d\mathbf{r}$.

Now
$$\int_{A}^{C} \vec{F} \cdot dr = \int_{-1}^{1} \langle Y, 1 \rangle \cdot \langle 0, 1 \rangle dt = \int_{-1}^{1} 1 dt = 2$$

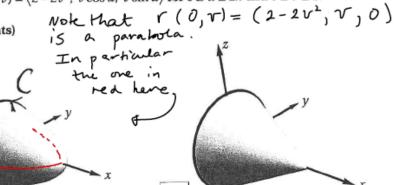
where we have used the param. Thus:

$$\vec{r}(t) = (0, t)$$
 for $-1 \le t \le 1$

$$\int_{C_0} \mathbf{F} \cdot d\mathbf{r} = -/\pi/2 - 2$$

Let S be the surface in \mathbb{R}^3 parameterized by $\mathbf{r}(u, v) = \langle 2 - 2v^2, v \cos u, v \sin u \rangle$ for $0 \le u \le 2\pi$ and $0 \le v \le 1$.

(a) Mark the correct picture of S below. (2 points)



also in cylindrical cardinates about the x-axis, with ρ being radius, satisfies the equation of the paraboloid $X=2-2e^2$. (b) For the vector field $F=\langle 0,-z,y\rangle$, directly evaluate $\iint_S (\operatorname{curl} F) \cdot \mathbf{n} \, dA$ where \mathbf{n} is unit normal vector field

that points in the positive x-direction. (5 points)

that points in the positive x-direction. (5 points)

curl
$$\vec{F} = \begin{vmatrix} 3/6x & 3/6y & 3/2 \\ 0 & -2 & y \end{vmatrix} = \langle 2, 0, 0 \rangle$$
 $\vec{\nabla}_{u} \times \vec{r}_{v} = \begin{vmatrix} i & j \\ 0 & -v \sin u \end{vmatrix} = \langle -v, -4v^{2} \cos u, -4v^{2} \sin u \rangle$
 $\vec{r}_{u} \times \vec{r}_{v} = \begin{vmatrix} i & j \\ 0 & -v \sin u \end{vmatrix} = \langle -v, -4v^{2} \cos u, -4v^{2} \sin u \rangle$

$$\iint_{S} (\operatorname{curl} \vec{F}) \vec{\pi} dA = \int_{0}^{2\pi} \int_{0}^{2\pi} \langle 2,0,0 \rangle \cdot \langle +V, 4v^{2} \cos u, 4v^{2} \sin u \rangle dv du$$

$$= \int_{0}^{2\pi} \int_{0}^{2\pi} 2V \, dV \, du = \int_{0}^{2\pi} v^{2} \Big|_{V=0}^{2\pi} du$$

$$= \int_{0}^{2\pi} 1 \, du = 2\pi$$

$$\iint_{S} (\operatorname{curl} F) \cdot \operatorname{n} dA = 2\pi$$

(c) Check your answer in (b) using Stokes' Theorem. (3 points)

$$\iint_{S} (\operatorname{curl} \vec{F}) \cdot \vec{n} dA = \int_{C} \vec{F} \cdot d\vec{r} = \int_{0}^{2\pi} (0, -\sin t, \cos t) \cdot \vec{r}'(t) dt$$

$$\vec{F}(t) = (0, \cos t, \sin t) = \int_{0}^{2\pi} \sin^{2}t + \cos^{2}t dt$$

$$\vec{F}'(t) = (0, -\sin t, \cos t) = \int_{0}^{2\pi} 1 dt = |2\pi| \sqrt{$$